Tutorial Quiz 2018

MATH1013 - Mathematics and Applications 1

Tutorial Quiz 8 Calculus and Linear Algebra

> Reading time: 1 minute Writing time: 15 minutes

Student Name: ______ University ID: ______

Question and Answer Book

Structure of Book

Number of	Number of questions	Number of
questions 3	to be answered 2	<u>marks</u> 15

- Students are NOT permitted any calculators or notes during the quiz.
- Students are NOT permitted to colaborate in any form during the quiz. Any signs of collaboration or cheating will result in a nullified score and the course convenor will be informed of any academic misconduct.

Materials supplied

- Question and answer booklet of 7 pages.
- Working space is provided throughout the booklet.

Instructions

- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer **all** questions in the space provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Linear Algebra

Question 1

Suppose $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear operator such that

$$S\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\5\end{bmatrix}$$
 and $S\left(\begin{bmatrix}0\\4\end{bmatrix}\right) = \begin{bmatrix}1\\4\end{bmatrix}$.

Evaluate $S\left(\begin{bmatrix}1\\-2\end{bmatrix}\right)$.

[3 marks].

Question 2

Determine the value(s) of $h \in \mathbb{R}$ such that

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\3\\4\\5h+\sqrt{3} \end{bmatrix}, \begin{bmatrix} 2+\sqrt{5}\\4-\frac{\pi}{1+\sqrt{3}}\\1-\sqrt{e}\\3h+1 \end{bmatrix} \right\} = \mathbb{R}^4.$$

[1 marks].

Question 3

Determine whether the statement: The zero vector **0** is contained in every vector space is a true statement. Justify your answer. [2 marks].

Calculus

Question 1

Evaluate the following derivatives.

(a) $\frac{d}{dx}\left(x^{\cos x}\right).$ [3 marks].(b) $\frac{d}{dx} \left(\int_{-x}^{\frac{1}{3x+1}-4\sin(x)} \sec^3\left(\sqrt{s-\log_e(s)+10}\pi s\right) ds \right).$ [3 marks].

Bonus Question

Differentiate the function

$$h(x) = \sin^{-1}\left(\frac{f(x)}{\sqrt{g(x)}}\right),$$

where f and g are differentiable everywhere and g(x) > 0 for all $x \in \mathbb{R}$.

[3 marks].