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Lecture 1: Initiation and Propaganda
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A complex manifold is a (connected, second-countable) Haus-
dorff topological space X with an atlas whose transition maps
are holomorphic.
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(†) Complex Euclidean space Cn.

(†) Complex projective space Pn – the quotient of (Cn+1)× by
the multiplicative action of C×.
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Complex manifolds are significantly more rigid than their real
counterparts.

The most notable example is the failure of the holomorphic-analogue
of the Whitney embedding theorem:

A smooth manifold M (smoothly) embeds into RN for some N .



Suppose X is a compact complex manifold (e.g., Pn or a compact
Riemann surface) which holomorphically embeds into some Cn.

X



The coordinate functions on Cn restrict to X, yielding holomorphic
functions on a compact set.

X

Cn

This violates the maximum principle unless X is a point.



If a compact complex manifold X (holomorphically) embeds into
some Cn, then X is a point.

Those complex manifolds which holomorphically embed into Cn

form an important class of complex manifolds – Stein manifolds.

Stein manifolds generalize the notion of a domain of holomorphy.

Any open Riemann surface is Stein.



We want to understand how the presence of a complex structure
interacts with the geometry of the manifold.



An almost complex structure is a smooth section

J ∈ H0(M,End(TM)), J2 = −id.
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A complex manifold is easily shown to be an almost complex manifold.

Existence of an almost complex structure can be formulated in
terms of the existence of a section of a vector bundle, charac-
teristic classes give obstructions to finding an almost complex
structure.

The only almost complex spheres are S2 and S6.



Almost complex manifolds are not complex, in general.

The obstruction is measured by the Nijenhuis tensor

NJ(u, v) := [u, v] + J [Ju, v] + J [u, Jv]− [Ju, Jv].

The Newlander–Nirenberg theorem states that NJ ≡ 0 is equiv-
alent to the existence of the existence of local holomorphic co-
ordinates.



An almost complex structure J is said to be a complex structure
if

NJ ≡ 0.

Every almost complex structure on a Riemann surface is a complex
structure.



Let V be a complex vector space with a positive-definite Hermitian
form

H : V × V → C.

We may write

H(u, v) = g(u, v)−
√
−1ω(u, v),

where g := Re(H) and ω := −Im(H).

(i) g defines a positive-definite quadratic form on V ,

(ii) ω defines a non-degenerate (1, 1)–form1 on V .

1A form ω is of type (1, 1) if ω(J ·, J ·) = ω(·, ·).



Let H denote the space of Hermitian forms on TX. Write

H = R⊕ S,

where R = {quadratic forms}, and S = {(1, 1)–forms}.

The almost complex structure J defines a linear embedding

ΦJ : R −→ Λ1,1(T ∗X), ΦJ(g) = ω(·, ·) := g(J ·, ·).

The linear constraint
dω = 0

on the bundle R defines a Kähler structure.



The Kähler condition can be equivalently formulated as the al-
most complex structure being Levi-Civita–parallel

∇LCJ = 0.

Kähler manifolds are precisely those complex manifolds which support
compatible symplectic and Riemannian structures.



If X is compact, the Kähler condition dω = 0 implies ω represents a
non-trivial cohomology class in H2

DR(X,R).

A cohomology class α ∈ H2
DR(X,R) is said to be a Kähler class

if α is represented by a Kähler metric.



Complex Euclidean space Cn with its Euclidean metric

ωCn :=
√
−1

n∑
i,j=1

dzi ∧ dzj

is Kähler.

Complex submanifolds of Kähler manifolds are Kähler.

In particular, all Stein manifolds are Kähler.



Many complex manifolds support non-Kähler structures or no Kähler
structures at all.

Hopf surfaces S3 × S1 cannot support a Kähler structure since

b2(S3 × S1) = 0.



A (partial) example:

Suppose S6 supports a complex structure.

Since b2(S6) = 0, there is no Kähler structure on S6.

Campana–Demailly–Peternell showed that S6 does not support
any non-constant meromorphic functions (i.e., the algebraic di-
mension a(S6) = 0).



The blow up
Blp(S6)→ S6

of S6 at one point is diffeomorphic to P3.

But Blp(S6) ' P3 is not biholomorphic to the standard P3, since

a(Blp(S6)) = 0.

So S6 parametrizes a family of exotic complex (non-Kähler)
structures on P3.



Complex projective space Pn with its Fubini–Study metric

ωFS :=
√
−1∂∂ log

(
1 +

n∑
k=1

|zk|2
)

is Kähler.

Projective manifolds are Kähler.



Not all Kähler manifolds are projective:

Standard example: Sufficiently generic complex torus

Cn>1/Λ.



Let X be a complex manifold.

A (holomorphic) line bundle L → X is said to be ample if
the sections of a sufficiently high tensor power L⊗k furnish a
holomorphic embedding

Φ : X −→ PNk .

For instance, the tangent bundle TΣ to a Riemann surface Σ of genus
g ≥ 2 is ample.



Let L → X be a line bundle. A Hermitian metric h on L is
given by a smooth family of Hermitian metrics

hp : Lp × Lp → C

on the fibers Lp of L.

If
KX := Λn,0(T ∗X)

denotes the canonical bundle. A Hermitian metric on KX is
given by a volume form.



The curvature form of a Hermitian metric is given by

Θh =
√
−1∂∂ log(h).

This defines a closed real (1, 1)–form.

A line bundle L → X is positive if there is a smooth Hermitian
metric h such that

Θh > 0

(in the sense of positive forms).



If L−1 → X is the dual bundle (with the induced metric h−1), then
the curvature form

Θh−1 =
√
−1∂∂ log(h−1) = −

√
−1∂∂ log(h) = −Θh.

A line bundle is negative if its dual bundle is positive.



Since the curvature form Θh is closed, it represents a cohomol-
ogy class

[Θh] ∈ H2
DR(X,R).

This cohomology class is the first Chern class of L, denoted
c1(L).



Define the curvature tensor R of a Kähler metric:

R m
i k`

:= −∂`Γ
m
ik.

If A = (Aij) is an invertible Hermitian matrix with entries depending
on t. Then Cramer’s rule gives

d

dt
det(A) = Aij

(
d

dt
Aij

)
det(A).

Hence,

Ricij = −∂jΓ
k
ki = −∂j(g

kq∂igkq) = −∂j∂i log(det(g)).



The Ricci curvature of a Kähler metric is locally given by

Ricω =loc −
√
−1∂∂ log(ωn).



A Hermitian metric h on the canonical bundle KX is equivalent to a
volume form ωn.

The curvature form is

Θh =
√
−1∂∂ log(ωn).

The Ricci curvature is the curvature form of a Hermitian metric
on the anti-canonical bundle K−1X :

Ricω = −
√
−1∂∂ log(ωn) = Θh−1 .



The Ricci curvature Ricω of a Kähler metric ω is cohomological
in nature, representing the first Chern class of the anti-canonical
bundle

c1(K−1X ) = [Ricω].



Negative Ricci implies KX is a positive line bundle:

Ricω < 0 =⇒ KX
−1 < 0 =⇒ KX > 0.



If (X,ω) is compact Kähler with Ricω < 0, then KX is ample.

This follows from the famous Kodaira embedding theorem:

A positive line bundle over a compact Kähler manifold is ample.



The Ricci flow starting from a Kähler metric ω0 is given by a
family of Riemannian metrics gt such that

∂gt
∂t

= −Ricgt , g|t=0 = g0.

The Ricci flow preserves the Kähler condition, and the resulting
flow is called the Kähler–Ricci flow.



A cohomology class in H2
DR(X,R) is called a Kähler class if it is

represented by a Kähler form.

The set of Kähler classes in the H2
DR(X,R) form an open convex

cone – the Kähler cone.



A cohomology class [α] ∈ H2
DR(X,R) on the boundary of the

Kähler cone is called a nef class.



Taking cohomology classes of the Kähler–Ricci flow:

∂

∂t
[ωt] = −[Ricωt

] = 2πc1(KX).

Hence,

[ωt] = [ω0] + 2πtc1(KX).



Let (Xn, ω0) be a compact Kähler manifold.

Then the Kähler–Ricci flow has a unique solution ωt defined on
the maximal time interval [0, T ), where

T := sup{t > 0 : [ω0] + 2πtc1(KX) is Kähler}.



The Kähler–Ricci flow exists for all time ⇐⇒ the canonical
bundle KX is nef.
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The sectional curvature of a metric ω defines a function

Secω : Gr2(TX) −→ R,

on the Grassmannian of 2–planes in the tangent bundle of X.

Inside Gr2(TX), we have a Pn–bundle given by the 2–planes invariant
under the complex structure J

u

Ju



The restriction of the sectional curvature to this Pn–bundle de-
fines the holomorphic sectional curvature.

(X,ω)

Secω : Gr2(TX)→ R

HSCω : Gr
J
2 (TX)→ R



If R denotes the (Riemannian) curvature tensor of a Kähler
metric ω, with complex structure J , the holomorphic sectional
curvature is given by

HSCω(u) :=
1

|u|4ω
R(u, Ju, u, Ju).

In terms of (1, 0)–vectors v ∈ T 1,0X, v = u−
√
−1Ju the holomorphic

sectional curvature reads

HSCω(v) =
1

|v|4ω

n∑
i,j,k,`=1

Rijk`vivjvkv`.



The holomorphic sectional curvature controls the distortion of
holomorphic maps.

HSCω < 0

C

C

HSCω > 0



A compact Kähler manifold (X,ω) with

(†) HSCω < 0 is Kobayashi hyperbolic – all holomorphic
maps C→ X are constant.

(†) HSCω > 0 is rationally connected – any two points lie in
the image of a rational curve P1 → X.



The holomorphic sectional curvature is in a similar place to the
Ricci curvature in the curvature heirarchy.

They are both dominated by the holomorphic bisectional cur-
vature, and both dominate the scalar curvature.



The holomorphic bisectional curvature HBCω of a Kähler metric
is defined

HBCω(u, v) :=
1

|u|2ω|v|2ω
R(u, Ju, v, Jv).

Clearly2:

Secω HBCω

HSCωRicω

2Arrows indicate curvature dominance



Constraints on HBCω are very restrictive:

(Mori, Siu–Yau solution of Frankel conjecture):

Compact Kähler with HBCω > 0 =⇒ X 'bihol. Pn.



The holomorphic sectional curvature does not dominate the
Ricci curvature, however.

Hitchin’s examples of Hodge metrics on Hirzebruch surfaces
have HSCω > 0 but Ricω 6> 0.

Secω HBCω

HSCωRicω ×



The Wu–Yau theorem states the following curious relationship
between the Ricci curvature and the holomorphic sectional curvature:

If (X,ω) is compact Kähler. Then

HSCω < 0 =⇒ ∃ ωϕ = ω +
√
−1∂∂ϕ such that Ricωϕ

< 0.

In particular,

HSCω < 0 =⇒ KX ample.


