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Lecture 1: Initiation and Propaganda



cohomology

Hermitian geometry

Kahler




A complex manifold is a (connected, second-countable) Haus-
dorff topological space X with an atlas whose transition maps
are holomorphic.
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(t) Complex Euclidean space C™.

(1) Complex projective space P™ — the quotient of (C™*1)* by
the multiplicative action of C*.

Pl

L




Complex manifolds are significantly more rigid than their real
counterparts.

The most notable example is the failure of the holomorphic-analogue
of the Whitney embedding theorem:

A smooth manifold M (smoothly) embeds into R for some N.




Suppose X is a compact complex manifold (e.g., P" or a compact
Riemann surface) which holomorphically embeds into some C".



The coordinate functions on C" restrict to X, yielding holomorphic
functions on a compact set.

(CTL

This violates the maximum principle unless X is a point.



If a compact complex manifold X (holomorphically) embeds into
some C", then X is a point.

Those complex manifolds which holomorphically embed into C™
form an important class of complex manifolds — Stein manifolds.

Stein manifolds generalize the notion of a domain of holomorphy.

Any open Riemann surface is Stein.



We want to understand how the presence of a complex structure
interacts with the geometry of the manifold.



An almost complex structure is a smooth section

J € H°(M,End(TM)), J? = —id.




A complex manifold is easily shown to be an almost complex manifold.

Existence of an almost complex structure can be formulated in
terms of the existence of a section of a vector bundle, charac-
teristic classes give obstructions to finding an almost complex
structure.

The only almost complex spheres are S? and S°.




Almost complex manifolds are not complex, in general.

The obstruction is measured by the Nijenhuis tensor

N (u,v) = [u,v] + J[Ju,v] + Ju, Jv] — [Ju, Jo].

The Newlander-Nirenberg theorem states that N7 = 0 is equiv-
alent to the existence of the existence of local holomorphic co-
ordinates.




An almost complex structure J is said to be a complex structure

if

N7 =0.

Every almost complex structure on a Riemann surface is a complex
structure.



Let V be a complex vector space with a positive-definite Hermitian
form

H:VxV —C.

We may write

H(u,v) = g(u,v) — vV—1w(u,v),

where g := Re(H) and w := —Im(H).

(i) g defines a positive-definite onV,

(ii) w defines a non-degenerate (1,1)—form! on V.

LA form w is of type (1,1) if w(J-, J-) = w(-,-).



Let H denote the space of Hermitian forms on T'X. Write
H =RdS,

where R = {quadratic forms}, and S = {(1,1)—forms}.

The almost complex structure J defines a linear embedding

d;: R — AVHT*X), D;(9) = w(-):=g(J-").

The linear constraint

dw = 0
on the bundle R defines a Kahler structure.




The Kahler condition can be equivalently formulated as the al-
most complex structure being Levi-Civita—parallel

vVieT =o.

Kahler manifolds are precisely those complex manifolds which support
compatible symplectic and Riemannian structures.



If X is compact, the Kahler condition dw = 0 implies w represents a
non-trivial cohomology class in H, (X, R).

A cohomology class o € H (X, R) is said to be a Kéhler class
if o is represented by a Kahler metric.




Complex Euclidean space C™ with its Euclidean metric

wen = \/—1 Z dZZ /\dEj

,J=1

is Kahler.

Complex submanifolds of Kahler manifolds are Kahler.

In particular, all Stein manifolds are Kahler.



Many complex manifolds support non-Kahler structures or no Kahler
structures at all.

Hopf surfaces S® x S! cannot support a Kahler structure since

bQ(SS X Sl) = 0.




A (partial) example:

Suppose SO supports a complex structure.

Since b, (S") = 0, there is no Kéhler structure on S°.

Campana-Demailly-Peternell showed that S® does not support
any non-constant meromorphic functions (i.e., the algebraic di-
mension a(S°) = 0).




The blow up
BL,(S%) — S°

of S at one point is diffeomorphic to P?.

But Bl,(S%) ~ P? is not biholomorphic to the standard P, since
a(Bl1,(S%)) = 0.

So S® parametrizes a family of exotic complex (non-Kéahler)
structures on P°.




Complex projective space P™ with its Fubini—-Study metric

WEs = V —18510g (1 + Z |Zk|2>
k=1

is Kahler.

Projective manifolds are Kahler.



Not all Kahler manifolds are projective:

Standard example: Sufficiently generic complex torus

Cn>1/A.




Let X be a complex manifold.

A (holomorphic) line bundle £ — X is said to be ample if
the sections of a sufficiently high tensor power £%* furnish a
holomorphic embedding

d: X —3 PNk,

For instance, the tangent bundle T2 to a Riemann surface X of genus
g > 2 is ample.



Let £ — X be a line bundle. A Hermitian metric A on L is
given by a smooth family of Hermitian metrics

hyp: Ly, x L, —=C

on the fibers £, of L.

If
Kx := A"9(T*X)

denotes the canonical bundle. A Hermitian metric on Kx 1is
given by a volume form.




The curvature form of a Hermitian metric is given by
O, = V—100log(h).

This defines a closed real (1, 1) form.

A line bundle £ — X is positive if there is a smooth Hermitian
metric h such that
O, >0

(in the sense of positive forms).




If £7! — X is the dual bundle (with the induced metric h=1), then
the curvature form

Op-1 = vV—100log(h™t) = —/—190log(h) = —Oy,.

A line bundle is negative if its dual bundle is positive.




Since the curvature form ©j, is closed, it represents a cohomol-
ogy class

[©4] € Hig (X, R).

This cohomology class is the first Chern class of £, denoted
C1 (E)




Define the curvature tensor R of a Kahler metric:

If A= (A;) is an invertible Hermitian matrix with entries depending
on t. Then Cramer’s rule gives

d - (d
— = AY | —A-
—rdet(4) = A ( thw> det(A).

Hence,

Ricz = —03F’,§i = —%(gkaﬁigkq) = —0;0; log(det(g)).




The Ricci curvature of a Kahler metric is locally given by

Ric, =1oc —V—1001log(w™).




A Hermitian metric h on the canonical bundle K x is equivalent to a
volume form w”.

The curvature form is

O, = V—100log(w").

The Ricci curvature is the curvature form of a Hermitian metric
on the anti-canonical bundle K)_(lz

Ric, = —v—190log(w") = Op-1.




The Ricci curvature Ric,, of a Kahler metric w is cohomological
in nature, representing the first Chern class of the anti-canonical
bundle

c1(Kx') = [Ricy].




Negative Ricci implies K x is a positive line bundle:

Ric, <0 = Ky '<0 = Ky >0.




If (X,w) is compact Kahler with Ric,, < 0, then Kx is ample,

This follows from the famous Kodaira embedding theorem:

A positive line bundle over a compact Kahler manifold is ample.




The Ricci flow starting from a Kahler metric wq is given by a
family of Riemannian metrics g; such that

g

ot = —Rngt> 9|t:0 = Jo-

The Ricci flow preserves the Kahler condition, and the resulting
flow is called the Kahler—Ricci flow.




A cohomology class in H3g (X, R) is called a Kéhler class if it is
represented by a Kahler form.

The set of Kihler classes in the H2¢ (X, R) form an open convex
cone — the Kahler cone.




A cohomology class [a] € H3z(X,R) on the boundary of the
Kéhler cone is called a nef class.




Taking cohomology classes of the Kahler—Ricci flow:

0

5wl = —[Ricy,] = 2me; (Kx).

Hence,

[we] = [wo] + 27ter (Kx).




Let (X™,wg) be a compact Kéhler manifold.

Then the Kahler—Ricci flow has a unique solution w; defined on
the maximal time interval [0, T), where

T := sup{t > 0: [wo] + 27tc; (K x) is Kéhler}.




The Kéahler-Ricci flow exists for all time <= the canonical
bundle K x is nef.

T < 400




The sectional curvature of a metric w defines a function
Secy, : Gra(TX) — R,

on the Grassmannian of 2-planes in the tangent bundle of X.

Inside Gro(7X), we have a P"bundle given by the 2—planes invariant
under the complex structure J

/\/ Ju




The restriction of the sectional curvature to this P"-bundle de-
fines the holomorphic sectional curvature.

Secy, : Gro(TX) - R

HSC,, : Grj (TX) — R

A —
e
A an o~ o — o

A an o — o — o —
A o~ o — o

(X, w)




If R denotes the (Riemannian) curvature tensor of a Kéhler
metric w, with complex structure J, the holomorphic sectional
curvature is given by

1
HSC, (u) = WR(U, Ju,u, Ju).

In terms of (1,0)—vectors v € T*YX, v = u — v/=1Ju the holomorphic
sectional curvature reads




The holomorphic sectional curvature controls the distortion of
holomorphic maps.

HSC, <0

HSC, > 0




A compact Kéahler manifold (X,w) with

(t) HSC,, < 0 is Kobayashi hyperbolic — all holomorphic
maps C — X are constant.

(t) HSC,, > 0 is rationally connected — any two points lie in
the image of a rational curve P! — X.




The holomorphic sectional curvature is in a similar place to the
Ricci curvature in the curvature heirarchy.

They are both dominated by the holomorphic bisectional cur-
vature, and both dominate the scalar curvature.




The holomorphic bisectional curvature HBC,, of a Kahler metric
is defined

1
HBC, (u,v) = |U|3)|’U|3)R(U7 Ju, v, Jv).
Clearly?:
Sec,, > HBC,
Ric,, HSC,,

2 Arrows indicate curvature dominance



Constraints on HBC,, are very restrictive:
(Mori, Siu—Yau solution of Frankel conjecture):

Compact Kahler with HBC, > 0 — X >~ P”.




The holomorphic sectional curvature does not dominate the
Ricci curvature, however.

Hitchin’s examples of Hodge metrics on Hirzebruch surfaces
have HSC,, > 0 but Ric, »# 0.

Sec,, > HBC,
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The Wu—Yau theorem states the following curious relationship
between the Ricci curvature and the holomorphic sectional curvature:

If (X,w) is compact Kéhler. Then
HSC.,, <0 = 3w, = w + V—109¢ such that Ric,,, < 0.
In particular,

HSC, <0 = Kx ample.




