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The results of this talk are based on joint work with James Stanfield1

(Univ. Münster) and some work in preparation with Frédéric Campana
(Univ. Lorraine) and Hervé Gaussier (Institut Fourier, Grenoble).

1Broder, K., Stanfield, J., A General Schwarz Lemma for Hermitian Manifolds,
arXiv:2309.04636.
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The Unit Disk D

The unit disk D := {z ∈ C : |z| < 1} in the complex plane has a number of
remarkable properties:

(1) Every holomorphic map C→ D is constant.

(2) There is a complete metric on D with curvature bounded above by a
negative constant.

(3) There is a distance function KD for which the automorphisms of D are
isometries and holomorphic self-maps f : D→ D are decreasing in the
sense that f ∗KD ≤ KD.

(4) The canonical bundle KS = Λ1,0
S of a curve S universally covered by D

is ample.

Statement (1) is just the classical Liouville theorem from one complex
variable. The metric in statement (2) is the Poincaré metric of constant
Gauss curvature −4. Statement (3) is a consequence of the Schwarz–Pick
lemma, where KD is the distance function obtained from integrating the
Poincaré metric. Statement (4) is a consequence of the uniformization
theorem and Riemann–Roch.
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Each of these properties has been used to define classes of ‘hyperbolic’
complex manifolds. A complex manifold X is said to be

(1̂) Brody hyperbolic if every holomorphic map C→ X is constant.

(2̂) Negatively curved if there is a Hermitian metric with holomorphic
sectional curvature bounded above by a negative constant.

(3̂) Kobayashi hyperbolic if the Kobayashi pseudodistance KX is
non-degenerate.

(4̂) Canonically polarized if the canonical bundle KX := Λn,0
X is ample.

(1̂) was introduced by Brody (1978). The holomorphic sectional curvature
of a Hermitian metric was introduced by Bochner (1947).
Grauert–Reckziegel (1965) used the Ahlfors–Schwarz lemma to show that
(2̂) =⇒ (1̂). The Kobayashi pseudodistance KX was introduced by
Kobayashi (1968). The Kobayashi pseudodistance is invariant in the sense
that automorphisms of X are isometries for KX. It also has the property
that holomorphic maps f : X → Y are decreasing in the sense that
f ∗KY ≤ KX. Since KC ≡ 0, if f : C→ X is a non-constant holomorphic map,
then f ∗KX ≤ KC ≡ 0; in particular, (3̂) =⇒ (1̂). Brody (1978) showed that
for compact complex manifolds, (1̂) ⇐⇒ (3̂).
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The Ahlfors–Schwarz lemma argument does not show that (2̂) =⇒ (3̂).
Greene–Wu (1979) showed that (2̂) =⇒ (3̂) by estimating KX directly.
Recall that the canonical bundle KX of a compact complex manifold X
ample if the sections of K⊗`

X furnish an embedding Φ : X → PN` . The
manifolds in (4̂) are all projective with Kähler–Einstein metrics gKE with
Ric(gKE) = −gKE. It is clear that condition (4̂) is the weakest. The
standard example to bring to mind is the Fermat hypersurface

Fd := {zd0 + · · ·+ zdn = 0} ⊂ Pn

of degree d > n + 1.
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Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn. In particular, ball
quotients Bn/Γ.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds, and
universal covers.

5



Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn. In particular, ball
quotients Bn/Γ.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds, and
universal covers.

5



Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn. In particular, ball
quotients Bn/Γ.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds, and
universal covers.

5



Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn. In particular, ball
quotients Bn/Γ.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds, and
universal covers.

5



Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn. In particular, ball
quotients Bn/Γ.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds, and
universal covers.

5



The main purpose of this talk is to present the most general evidence for
the following conjecture of Kobayashi (1970) and Lang (1986).

Conjecture. Let X be a compact Kobayashi hyperbolic Kähler
manifold. Then the canonical bundle KX is ample. In particular, X is
projective and admits a Kähler–Einstein metric g with Ric(g) = −g.

Recall that a complex manifold X is Kähler if it admits a Hermitian metric
g such that the 2-form ωg(·, ·) := g(J·, ·) is closed, i.e., dωg = 0. This is
equivalent to the Levi-Civita connection being compatible with the complex
structure J in the sense that LC∇J = 0.

Kähler metrics exist in absurd abundance: The Euclidean metric on Cn,
Bergman metric on Bn, and Fubini–Study metric on Pn are Kähler. Further,
since complex submanifolds inherit the Kähler condition, projective and
Stein manifolds are Kähler.
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Evidence for the Kobayashi–Lang Conjecture

Conjecture. Let X be a compact Kobayashi hyperbolic Kähler
manifold. Then the canonical bundle KX is ample. In particular, X is
projective and admits a Kähler–Einstein metric g with Ric(g) = −g.

Wong (81) and Campana (91) verified the Kobayashi–Lang conjecture for
compact complex surfaces.

For compact Kähler threefolds, it suffices to rule out the hyperbolicity of
Calabi–Yau threefolds with b2 < 13 (Heath-Brown–Wilson).

The most significant progress has been made under curvature assumptions.
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Curvature Aspects of Hyperbolicity

Let X be a complex manifold. Let g be a Hermitian metric, locally
described in a coordinate chart (z1, ..., zn) by

g =
∑
k,`

gk ¯̀dz
k ⊗ dz̄`,

where gk ¯̀ = g
(
∂
∂zk
, ∂
∂z̄`

)
is a Hermitian matrix. The (Chern) curvature

tensor of g is the (0, 4)-tensor whose components are locally given by

Rījk ¯̀ := R
(
∂

∂zi
,
∂

∂z̄j
,
∂

∂zk
,
∂

∂z̄`

)
= − ∂2gk ¯̀

∂zi∂z̄j
+ gpq̄

∂gkq̄
∂zi

∂gp¯̀

∂z̄j
.

The holomorphic sectional curvature of a Hermitian metric g is defined

HSCg(ξ) =
1
|ξ|4g

∑
i,j,k,`

Rījk ¯̀ξ
iξ

j
ξkξ

`
,

where ξ =
∑

k ξ
k ∂

∂zk
.
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The Holomorphic Sectional Curvature

The holomorphic sectional curvature

HSCg(ξ) =
1
|ξ|4g

∑
i,j,k,`

Rījk ¯̀ξ
iξ

j
ξkξ

`

controls the value distribution of holomorphic curves in X:

(i) If HSCg ≤ −Λ0 < 0, every holomorphic map C→ X is constant (i.e., X
is Kobayashi hyperbolic).

(ii) If g is Kähler and HSCg > 0, then X is rationally connected, i.e., any
two points are contained in the image of some holomorphic map
P1 → X.

The holomorphic sectional curvature is not strong enough to control the
Ricci curvature: Hitchin (1976) showed that Hirzebruch surfaces
Fn := P(OP1 ⊕ OP1(n)) for n > 1 admit Kähler metrics with HSC> 0, but no
Kähler metrics of Ric > 0.
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This makes the following conjecture (a special case of the Kobayashi–Lang
conjecture) even more surprising:

Conjecture. (Yau). Let X be a compact Kähler manifold with a
Hermitian metric HSCĝ < 0. Then the canonical bundle KX is ample.
In particular, X is projective and admits a Kähler–Einstein metric
gKE with Ric(gKE) = −gKE.

The conjecture was verified by Heier–Lu–Wong (2010) for projective
threefolds with a Kähler metric ĝ satsying HSCĝ < 0. Wu–Yau (2016)
developed a general strategy, extending the result to arbitrary dimension.
The projective assumption was later relaxed to compact Kähler by
Tosatti–Yang (2017).

Theorem. Let X be a compact Kähler manifold with a Kähler metric
HSCĝ < 0. Then the canonical bundle KX is ample. In particular, X
is projective and admits a Kähler–Einstein metric gKE with
Ric(gKE) = −gKE.
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The Wu–Yau Strategy

The Wu–Yau strategy is to proceed by contradiction, assuming that KX is
not ample. Then produce a sequence of Kähler metrics gε, obtain uniform
estimates (independent of ε > 0, and obtain the desired contradiction.

If ĝ is the Kähler metric with HSCĝ ≤ −Λ0 < 0, the core estimate is
ĝ ≤ Cgε, or equivalently,

trgε(ĝ) ≤ C.

The main technique for achieving this estimate is the Schwarz lemma, i.e.,
an estimate on |∂f |2 = trgε(f

∗ĝ), where f = id : (X, gε)→ (X, ĝ) is the
identity map.
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trgε(ĝ) ≤ C.

The main technique for achieving this estimate is the Schwarz lemma, i.e.,
an estimate on |∂f |2 = trgε(f
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∗ĝ), where f = id : (X, gε)→ (X, ĝ) is the
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The Schwarz Lemma

Let us write f = id : (X, gε)→ (X, ĝ) for the identity map. Write the
derivative locally as ∂f = f αi dzi ⊗ f ∗∂wα = ∂fα

∂zi
dzi ⊗ f ∗∂wα .

Lu (1967) showed that

∆gtrg(f ∗ĝ) = |∇∂f |2 + Rick ¯̀g
kq̄gp

¯̀f αp f βq ĝαβ̄︸ ︷︷ ︸
source curvature term

− R̂αβ̄γδ̄
(
gījf αi f βj

)(
gpq̄f γp f γq

)
︸ ︷︷ ︸

target curvature term

,

where ∆g := gīj∂i∂̄j.

In particular, to apply the maximum principle, we want a lower bound on
the Ricci curvature of g and an upper bound on the target curvature term
of ĝ.
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Two general improvements

Since Lu’s calculation in 67, there have been two general improvements:

• Yau (1978) applied his maximum principle to this calculation, which
permitted significantly more general source manifolds.

• Royden (1980) showed that the target curvature term is controlled
from an upper bound on the holomorphic sectional curvature if the
target metric is Kähler. This permits significantly more general target
manifolds.

In particular, if the holomorphic sectional curvature of ĝ is bounded above
HSCĝ ≤ −Λ0 ≤ 0, then

R̂αβ̄γδ̄
(
gījf αi f βj

)(
gpq̄f γp f γq

)
≤ −Λ0(n + 1)

2n trg(f ∗ĝ)2.
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Royden’s Schwarz Lemma

Theorem. (Royden). Let X be a compact complex manifold with
dimC X = n. Let f : (X, g)→ (X, ĝ) be a holomorphic map. Suppose that g
is Kähler with

Ric(g) ≥ −C1g + C2ĝ,

for some constants C1,C2 ∈ R. Suppose that ĝ is Kähler with
HSCĝ ≤ −Λ0 ≤ 0. Then

∆gtrg(f ∗ĝ) ≥ |∇∂f |2 − C1trg(f ∗ĝ) +

(
C2 +

Λ0(n + 1)

2n

)
trg(f ∗ĝ)2,

and hence,

trg(f ∗ĝ) ≤ 2nC1

2nC2 + Λ0(n + 1)
.
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Let us recall the main application of the Royden Schwarz lemma:

Theorem. Let X be a compact Kähler manifold with a Kähler metric
HSCĝ < 0. Then the canonical bundle KX is ample.

And our main goal is the following:

Conjecture. (Yau). Let X be a compact Kähler manifold with a
Hermitian metric HSCĝ < 0. Then the canonical bundle KX is ample.

Passing from Kähler to Hermitian is very difficult, in general. Hence, a
number of classes of Hermitian metrics, generalizing the Kähler condition
have been introduced. A very important class of Hermitian metrics are the
pluriclosed metrics, defined by ∂∂̄ω = 0. Such metrics always exist on a
compact complex surface (Gauduchon). The bi-invariant metric on a
compact semi-simple Lie group of even rank (endowed with its Samelson
complex structure) is pluriclosed.
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The Real Bisectional Curvature

In the Wu–Yau theorem, the negatively curved metric is only used to
control the target curvature term

R̂αβ̄γδ̄
(
gījf αi f βj

)(
gpq̄f γp f γq

)
in Royden’s Schwarz lemma For non-Kähler metrics, Royden’s argument
fails to control this term. Yang–Zheng (2018) introduced the real
bisectional curvature

RBCĝ(ξ) :=
1
|ξ|2

∑
α,β,γ,δ

R̂αβ̄γδ̄ξ
αβ̄ξγδ̄,

precisely to control this target curvature term. Here, ξ is a nonnegative
Hermitian (1, 1)-tensor. As a consequence, Yang–Zheng proved the
following extension of the Wu–Yau theorem.

Theorem. (Yang–Zheng). Let X be a compact Kähler manifold with a
Hermitian metric of RBCĝ < 0. Then X has ample canonical bundle.

Because the real bisectional curvature is defined to be the curvature
constraint that appears as the target curvature term in the Schwarz lemma,
it is far from clear if any improvements can be made.
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gījf αi f βj

)(
gpq̄f γp f γq

)
in Royden’s Schwarz lemma For non-Kähler metrics, Royden’s argument
fails to control this term. Yang–Zheng (2018) introduced the real
bisectional curvature
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But it turns out that the real bisectional curvature is not sharp, and the
purpose of the present talk is to exhibit the first general improvement on
the Schwarz lemma in the Hermitian category since Royden.

Before stating the main workhorse, let us state the main application; the
following most general form of the Kobayashi–Lang conjecture:

Theorem. (B.–Stanfield, 2023). Let X be a compact Kähler manifold
with a pluriclosed metric ĝ of HSCĝ < 0. Then the canonical bundle
KX is ample. In particular, X is projective and admits a
Kähler–Einstein metric g with Ric(g) = −g.
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The core idea is to pull out the skew-symmetric part of |∇∂f |2. If the target
metric ĝ is not Kähler, the skew-symmetric part yields torsion terms which
temper the real bisectional curvature. Hence, we obtain the following
general Schwarz lemma:

Theorem. (B.–Stanfield, 2023). Let f : (X, g)→ (Y, ĝ) be a holomorphic
map between Hermitian manifolds. Then

∆gtrg(f ∗ĝ) ≥ Rick ¯̀g
kq̄gp

¯̀f αp f βq ĝαβ̄

−
(
R̂αβ̄γδ̄ −

1
4
T̂ραγ T̂σβδ ĝρσ̄

)
gījf αi f βj g

pq̄f γp f γq ,

The new target curvature term is then what we call the
tempered real bisectional curvature

RBCτĝ(ξ) :=
1
|ξ|2

∑
α,β,γ,δ

(
R̂αβ̄γδ̄ −

1
4
T̂ραγ T̂σβδ ĝρσ̄

)
ξαβ̄ξγδ̄.

This new curvature condition is intrinsic to the Hermitian structure.
Remarkably, if ĝ is a pluriclosed metric, then

HSCĝ < 0 =⇒ RBCτĝ < 0.
18
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map between Hermitian manifolds. Then

∆gtrg(f ∗ĝ) ≥ Rick ¯̀g
kq̄gp

¯̀f αp f βq ĝαβ̄
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Remarkably, if ĝ is a pluriclosed metric, then
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)
ξαβ̄ξγδ̄.

This new curvature condition is intrinsic to the Hermitian structure.
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18



The core idea is to pull out the skew-symmetric part of |∇∂f |2. If the target
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)
ξαβ̄ξγδ̄.

This new curvature condition is intrinsic to the Hermitian structure.
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∆gtrg(f ∗ĝ) ≥ Rick ¯̀g
kq̄gp

¯̀f αp f βq ĝαβ̄
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metric ĝ is not Kähler, the skew-symmetric part yields torsion terms which
temper the real bisectional curvature. Hence, we obtain the following
general Schwarz lemma:

Theorem. (B.–Stanfield, 2023). Let f : (X, g)→ (Y, ĝ) be a holomorphic
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The tempered Schwarz lemma is the first general improvement on Royden’s
Schwarz lemma since 1980. As a consequence, this presents the most
general evidence for the conjectures Kobayashi, Lang, and Yau:

Theorem. (B.–Stanfield, 2023). Let X be a compact Kähler manifold
with a pluriclosed metric ĝ of HSCĝ < 0. Then the canonical bundle
KX is ample. In particular, X is projective and admits a
Kähler–Einstein metric g with Ric(g) = −g.
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