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Riemann Mapping Theorem

Theorem. (Riemann, Koebe). A simply connected domain Ω ( C is
biholomorphic to the unit disk D = {z ∈ C : |z| < 1}.

Ω

D
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The Birth of Several Complex Variables

Theorem. (Poincaré). The ball B2 := {|z|2 + |w|2 < 1} is not
biholomorphic to the bidisk D2 := {|z| < 1, |w| < 1}.
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Pseudoconvexity

Definition. A bounded domain Ω ⊂ Cn is (strongly) pseudoconvex if
for all p ∈ ∂Ω, there is a smooth local defining function ϕ such that
complex Hessian ∂∂̄ϕ =

(
∂2ϕ
∂zi∂zj

)
is (strictly) positive definite at p.

Ω ⊆ Cn

p

U

∂2ϕ
∂zi∂zj

(p) ≥ 0

ϕ < 0
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Pseudoconvexity of the Ball B2 and the Bidisk D2.

The bidisk D2 is pseudoconvex while the ball B2 is strongly pseudoconvex.

Pseudoconvexity and strong pseudoconvexity are preserved under
biholomorphism. Hence, D2 and B2 cannot be biholomorphic.

|z| < 1

|w| < 1
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Disk Fibrations

This discrepancy has consequences on the behavior of disk fibrations:

Definition. A surjective holomorphic submersion p : X→ S is said to
be a disk fibration if every fiber Xs := p−1(s), for s ∈ S, is
biholomorphic to a disk.

S

p

0s t

Xs Xt

X0

The projection onto one of the factors defines a disk fibration structure on
both D2 and B2.
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The Bidisk D2 as a Disk Fibration

Reminder. We say that a disk fibration p : X→ S is locally
(holomorphically) trivial if for each point s ∈ S, there is an open
neighborhood U 3 s such that

p−1(U) ' U× D.

Of course, if X = D2, for any point s ∈ D, we can take U = D. Hence,
for the bidisk D2, the disk fibration p : D2 → D is holomorphically
trivial.

6



The Ball B2 as a Disk Fibration

On the other hand, the disk fibration p : B2 → D cannot be holomorphically
trivial:

An old theorem of Royden tells us that a disk fibration is locally
holomorphically trivial if and only if it is holomorphically trivial.
Hence, if p : B2 → D is locally trivial, then B2 would be
biholomorphic to D2.

Hence, from the viewpoint of moduli and deformation theory, the bidisk D2

and the ball B2 behave very differently.
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Disk Fibrations and Curvature

Understanding the behavior of complex manifolds in families can be
difficult, and we would like to have a robust mechanism for measuring the
existence or non-existence of holomorphic variation in the fibers.

Question. Can the behavior of the disk fibrations p : X→ S be
detected by looking at the curvature of metrics which reside on X?
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Riemannian Manifolds with Negative Curvature

Definition. We say that a complete Riemannian manifold (M, g)

satisfies the unique geodesic property if for any p, q ∈ M, there is a
unique geodesic connecting p and q that minimizes the length in its
homotopy class.

Key Lemma. Let (M, g) be a complete Riemannian manifold with
non-positive sectional curvature. Then (M, g) supports the unique
geodesic property.
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Riemannian Manifolds with Negative Curvature

Corollary. (Cartan–Hadamard). Let (M, g) be a complete
Riemannian manifold supporting the unique geodesic property. Then
the universal cover M̃ 'diffeo. Rn.

Proof. π1(M̃) = 0 =⇒ only one homotopy class.
=⇒ unique geodesic connecting any two points of M̃.
=⇒ exponential map expp : TpM̃ → M̃ is bijective.
=⇒ exponential map is a diffeomorphism.
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Riemannian Manifolds with Negative Curvature

Theorem. (Priessman). Let (M, g) be a compact Riemannian
manifold with Secg < 0. Then every abelian subgroup of π1(M) is
infinite cyclic.

Proof. Let α, β ∈ π1(M, p) be two commuting loops.
Homotopy between αβ and βα =⇒ ∃ f : T2 → M (continuous).
Secg < 0 + ES Thm =⇒ f 'homotopic fH : T2 → M (harmonic).
Secg < 0 =⇒ fH(T2) ⊂ γ (closed geodesic).
=⇒ loops in π1(M) given by α and β through the homotopy from f
to fH are multiples of γ.
=⇒ contained in a cyclic subgroup of π1(M).
Unique geodesic property =⇒ cyclic group is infinite.
=⇒ {α, β} ⊂ π1(M) is infinite cyclic.
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Riemannian Manifolds with Negative Curvature

Corollary. Compact Riemannian manifolds (M, g) with Secg < 0
cannot be homeomorphic to products.

Proof. Suppose M ' X × Y.
Cartan–Hadamard =⇒ πk(M) = 0, k > 1 (i.e., M is aspherical).
=⇒ X,Y are aspherical.
M compact =⇒ X,Y compact =⇒ π1(X) 6= 0 and π1(Y) 6= 0.
=⇒ ∃γX 6= 0 ∈ π1(X), γY 6= 0 ∈ π1(Y).
=⇒ {γX} ' Z ⊂ π1(X), {γY} ' Z ⊂ π1(Y).
=⇒ {γX, γY} ' Z⊕ Z.
Violates Priessman’s theorem.
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Negative Curvature and Products

Without compactness, negative sectional curvature is not obstructed on
products:

Theorem. (Anderson). Let f : E→ B be a smooth vector bundle over
a compact Riemannian manifold (B, gB) with SecgB < 0. Then E

admits a complete Riemannian metric gE with

−a ≤ SecgE ≤ −1.

Theorem. (Bishop–O’Neill). There is a complete metric of constant
negative curvature on R× F, where F is any compact Riemannian
manifold with a flat metric.
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Complex Structures

Definition. An almost complex structure J on a smooth manifold M
is an endomorphism

J : TM → TM, J
2 = −id.

TpM

M

vp
Jvp

Jvp

vp

TpM
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An Almost Complex Structure on S2

Identify S2 ⊂ R3 with the space of unit imaginary quaternions
Im(H3) ' R3. For each point p ∈ S2, we get a map Jp : TpS2 → TpS2

satisfying J2p = −idTpS2 , given by Jp(v) := p× v.

p

S2

TpS2
uJpu

Im(H)
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In general, an almost complex structure J ∈ End(TX) is not sufficient
to yield local holomorphic coordinates. There is an obvious
obstruction: Suppose X is a complex manifold with holomorphic
coordinates (z1, ..., zn) centered at a point p ∈ X. The tangent space
to X at the point p is the complex vector space:

TpX = spanC

{
∂

∂z1
, ...,

∂

∂zn

}
.

X

p

ϕ
U

Cn
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Obstruction to Local Holomorphic Coordinates

Let M be a smooth manifold with almost complex structure J. The
condition J2 = −id gives an eigenspace splitting

TC
p M ' T1,0

p M ⊕ T0,1
p M,

corresponding to the eigenvalues
√
−1 and −

√
−1, respectively.

If (x1, ..., x2n) are smooth coordinates on M, then T1,0
p M is spanned by

∂

∂zi
:=

∂

∂xi
−
√
−1J ∂

∂xi
,

and T0,1
p M is spanned by

∂

∂zi
:=

∂

∂xi
+
√
−1J ∂

∂xi
.

Hence, if an almost complex structure J gives rise to a system of local
holomorphic coordinates, we need to be able to find a complex manifold X
such that the tangent bundle of X is prescrisely T1,0M.
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Vector Fields and Integral Curves

We have seen this before in the context of vector fields and integral
curves:

Rn

v ∈ H0 (TRn)

vp ∈ TpRn
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Vector Fields and Integral Curves

We have seen this before in the context of vector fields and integral
curves:

Rn

v ∈ H0 (TRn)

γ : (0, 1) → Rn γ̇ = d
dtγ = v
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Integrability

The integrability condition on the complex structure is merely a
higher-dimensional version of this:

Ap ⊆ TpM
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Integrability

The integrability condition on the complex structure is merely a
higher-dimensional version of this:

Ap ⊆ TpM

M
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The Newlander–Nirenberg Theorem

The Frobenius theorem tells us that T1,0M is an integrable subbundle
if and only if it is closed under Lie bracket:

[u, v] ⊆ T1,0M, ∀u, v ∈ T1,0M.

This manifests as the vanishing of the Nijenhuis tensor:

N
J(u0, v0) := [u0, v0] + J([Ju0, v0] + [u0, Jv0])− [Ju0, Jv0].

Theorem. (Newlander–Nirenberg). An almost complex structure J is
integrable if and only if NJ ≡ 0.
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A Non-Integrable Almost Complex Structure on S6

We can repeat the almost complex structure construction on S2 with
S6 – identify S6 with the space of unit imaginary octonions Im(O).
This endows S6 with an almost complex structure.

If one computes the Nijenhuis tensor of this almost complex
structure, however, it does not vanish precisely because the octonions
are not associative.
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Hermitian and Kähler Metrics

Definition. A Riemannian metric g on a complex manifold (X, J) is
said to be Hermitian if

g(Ju, Jv) = g(u, v), u, v ∈ TX.

We say that a Hermitian metric g is Kähler if the 2–form

ωg(u, v) := g(Ju, v)

is closed.
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Examples

Examples of Kähler Manifolds.

† Complex projective space Pn endowed with the Fubini–Study metric.

 Projective manifolds.

† Euclidean space Cn endowed with the Euclidean metric.

 Stein manifolds (in particular, pseudoconvex domains).

† A compact complex surface is Kähler if and only if the first Betti
number is even.

Examples of non-Kähler Manifolds.

 Hopf surface S1 × S3 is not Kähler.
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Kodaira Fibration Surfaces

Definition. Let p : X→ S be a surjective proper holomorphic
submersion onto a hyperbolic curve with hyperbolic fibers. If there
fibers are not all biholomorphic, then we say that p : X→ S is a
Kodaira Fibration Surface.

S

s0

Xs0

X
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Sectional Curvature

The Sectional Curvature is a Riemannian invariant, not a
complex-analytic invariant.

Let (M, g, J) be Kähler. Compexifying the Riemannian curvature tensor R
gives a quadrilinear map R on TCM ⊕ TCM with the only non-trivial
components given by

R(u, v,w, z), u, v,w, z ∈ TCM.

Hence, the natural Hermitian replacement for the sectional curvature
is given by

HBCω(u, v) := R(u, u, v, v).
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The Sectional Curvature

Set u = 1√
2

(
u0 −

√
−1Ju0

)
and v = 1√

2

(
v0 −

√
−1Jv0

)
.

The Bianchi identity gives

R(u, u, v, v) = R(v0, u0, u0, v0) + R(Ju0, v0, v0, Ju0).

In particular, R(u, u, v, v) is a sum of two sectional curvatures, and
we therefore call it the holomorphic bisectional curvature.
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The Holomorphic Bisectional Curvature

The bisectional curvature is obviously weaker than the sectional
curvature, but it is still a very restrictive curvature constraint:

Theorem. (Mori, Siu–Yau). A compact Kähler manifold with
HBC > 0 is biholomorphic to Pn.

Theorem. (Mohsen). There are compact simply connected projective
manifolds with HBC < 0.

Of course, Mohsen’s examples cannot admit metrics with Sec < 0 by the
Cartan–Hadamard theorem.
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The Complex-Analytic Category

Question. Let f : E→ B be a holomorphic vector bundle, where B is
compact and admits a Hermitian metric ω with cHBCω < 0. Does E
admit a complete Hermitian metric with −a ≤ cHBC ≤ −1, for some
constant a > 1?
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An Anderson Theorem for Holomorphic Bundles?

The answer turns out to be false, by a result of F. Zheng:

Theorem. (Zheng). Let X := X × Y be a product complex manifold
with X compact. Then X does not admit a Hermitian metric ω with
cHBCω ≤ −1.
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A Theorem of Paul Yang

Theorem. (Yang). Let F ↪→ X→ B be a holomorphic fiber bundle
with F compact. Then X does not admit a complete Kähler metric
with HBCω ≤ −κ0 < 0.

The following theorem of Fischer and Grauert shows that holomorphic fiber
bundles with compact fiber are trivial in the following sense:

Theorem. (Fischer–Grauert). Let p : X→ S be a holomorphic family
of compact complex manifolds. The fibers of p are all biholomorphic
if and only if p is a holomorphic fiber bundle.
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A Theorem of Paul Yang

Theorem. (Yang). Let F ↪→ X→ B be a holomorphic fiber bundle
with F compact. Then X does not admit a complete Kähler metric
with HBCω ≤ −κ0 < 0.

Corollary. Let p : X→ B be a holomorphic family of compact
complex manifolds. If X admits a complete Kähler metric with
HBCω ≤ −κ0 < 0, there must be non-trivial holomorphic variation in
the fibers.
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Necessity of the Upper Bound

The bisectional curvature must be bounded away from zero:

Theorem. (Klembeck). There is a complete Kähler metric on Cn

with HBCω > 0.

Seshadri gave a small modification of Klembeck’s construction, showing:

Theorem. (Seshadri = Klembeck +ε). There is a complete Kähler
metric on Cn with HBCω < 0.
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The Conjectural Picture

Conjecture. Let f : X→ S be a holomorphic family of complex
manifolds. Suppose X admits a complete Hermitian metric with
HBC ≤ −κ0 < 0. Then f is not (holomorphically) locally trivial.
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Curvature of Kodaira Fibration Surfaces

Theorem. (To–Yeung). Let p : X→ S be a Kodaira fibration surface.
Then X admits a Kähler metric with HBCω < 0.
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A Question Raised by Ngaiming Mok

Question. (Mok). Does the bidisk D2 := D× D admit a complete
Kähler metric with HBCω ≤ −κ0 < 0?
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Thanks for listening!
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