Curvature and Moduli

Some Intimations and Propaganda

Kyle Broder

The University of Queensland

Theorem. (Riemann, Koebe). A simply connected domain $\Omega \subsetneq \mathbb{C}$ is biholomorphic to the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

Theorem. (Poincaré). The ball $\mathbb{B}^2 := \{|z|^2 + |w|^2 < 1\}$ is not biholomorphic to the bidisk $\mathbb{D}^2 := \{ |z| < 1, |w| < 1 \}.$

Definition. A bounded domain $\Omega \subset \mathbb{C}^n$ is (strongly) pseudoconvex if for all $p \in \partial \Omega$, there is a smooth local defining function φ such that complex Hessian $\partial \bar{\partial} \varphi = \left(\frac{\partial^2 \varphi}{\partial z \partial \bar{z}} \right)$ $\frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}$ is (strictly) positive definite at *p*.

Pseudoconvexity of the Ball \mathbb{B}^2 and the Bidisk \mathbb{D}^2 .

The bidisk \mathbb{D}^2 is pseudoconvex while the ball \mathbb{B}^2 is strongly pseudoconvex.

Pseudoconvexity and strong pseudoconvexity are preserved under biholomorphism. Hence, \mathbb{D}^2 and \mathbb{B}^2 cannot be biholomorphic.

Disk Fibrations

This discrepancy has consequences on the behavior of disk fibrations:

Definition. A surjective holomorphic submersion $p : \mathcal{X} \to \mathcal{S}$ is said to be a disk fibration if every fiber $\mathfrak{X}_s := p^{-1}(s)$, for $s \in \mathcal{S}$, is biholomorphic to a disk.

Reminder. We say that a disk fibration $p: \mathfrak{X} \to \mathfrak{S}$ is locally (holomorphically) trivial if for each point $s \in \mathcal{S}$, there is an open neighborhood $\mathfrak{U} \ni s$ such that

 $p^{-1}(\mathfrak{U}) \simeq \mathfrak{U} \times \mathbb{D}.$

Of course, if $\mathfrak{X} = \mathbb{D}^2$, for any point $s \in \mathbb{D}$, we can take $\mathfrak{U} = \mathbb{D}$. Hence, for the bidisk \mathbb{D}^2 , the disk fibration $p : \mathbb{D}^2 \to \mathbb{D}$ is holomorphically trivial.

On the other hand, the disk fibration $p : \mathbb{B}^2 \to \mathbb{D}$ cannot be holomorphically trivial:

An old theorem of Royden tells us that a disk fibration is locally holomorphically trivial if and only if it is holomorphically trivial. Hence, if $p : \mathbb{B}^2 \to \mathbb{D}$ is locally trivial, then \mathbb{B}^2 would be biholomorphic to \mathbb{D}^2 .

Hence, from the viewpoint of moduli and deformation theory, the bidisk \mathbb{D}^2 and the ball \mathbb{B}^2 behave very differently.

Understanding the behavior of complex manifolds in families can be difficult, and we would like to have a robust mechanism for measuring the existence or non-existence of holomorphic variation in the fibers.

Question. Can the behavior of the disk fibrations $p: \mathfrak{X} \to \mathfrak{S}$ be detected by looking at the curvature of metrics which reside on X? Definition. We say that a complete Riemannian manifold (M, g) satisfies the unique geodesic property if for any $p, q \in M$, there is a unique geodesic connecting p and q that minimizes the length in its homotopy class.

Key Lemma. Let (M, g) be a complete Riemannian manifold with non-positive sectional curvature. Then (M, g) supports the unique geodesic property.

Corollary. (Cartan–Hadamard). Let (M, g) be a complete Riemannian manifold supporting the unique geodesic property. Then the universal cover $\widetilde{M} \simeq_{\text{diffeo.}} \mathbb{R}^n$.

Proof. $\pi_1(\widetilde{M}) = 0 \implies$ only one homotopy class.

- \implies unique geodesic connecting any two points of \widetilde{M} .
- \implies exponential map $\exp_p : T_pM \to M$ is bijective.
- \implies exponential map is a diffeomorphism.

Theorem. (Priessman). Let (M, g) be a compact Riemannian manifold with $\text{Sec}_{g} < 0$. Then every abelian subgroup of $\pi_1(M)$ is infinite cyclic.

Proof. Let $\alpha, \beta \in \pi_1(M, p)$ be two commuting loops. Homotopy between $\alpha\beta$ and $\beta\alpha \implies \exists f : \mathbb{T}^2 \to M$ (continuous). $\operatorname{Sec}_g < 0 + \operatorname{ES}$ Thm $\implies f \simeq_{\text{homotopic}} f^H : \mathbb{T}^2 \to M$ (harmonic). $\operatorname{Sec}_g < 0 \implies f^{\text{H}}(\mathbb{T}^2) \subset \gamma \text{ (closed geodesic)}.$ \implies loops in $\pi_1(M)$ given by α and β through the homotopy from *f* to f^{H} are multiples of γ . \implies contained in a cyclic subgroup of $\pi_1(M)$. Unique geodesic property \implies cyclic group is infinite. $\implies {\alpha, \beta} \subset \pi_1(M)$ is infinite cyclic.

Corollary. Compact Riemannian manifolds (M, g) with $Sec_g < 0$ cannot be homeomorphic to products.

Proof. Suppose $M \simeq X \times Y$. Cartan–Hadamard $\implies \pi_k(M) = 0, k > 1$ (i.e., *M* is aspherical). =⇒ *X*, *Y* are aspherical. *M* compact \implies *X*, *Y* compact $\implies \pi_1(X) \neq 0$ and $\pi_1(Y) \neq 0$. $\implies \exists \gamma_X \neq 0 \in \pi_1(X), \gamma_Y \neq 0 \in \pi_1(Y).$ \Rightarrow $\{\gamma_X\} \simeq \mathbb{Z} \subset \pi_1(X), \ \{\gamma_Y\} \simeq \mathbb{Z} \subset \pi_1(Y).$ \Rightarrow $\{\gamma_X, \gamma_Y\} \simeq \mathbb{Z} \oplus \mathbb{Z}.$ Violates Priessman's theorem.

Without compactness, negative sectional curvature is not obstructed on products:

Theorem. (Anderson). Let $f : \mathcal{E} \to \mathcal{B}$ be a smooth vector bundle over a compact Riemannian manifold $(\mathcal{B}, g_{\mathcal{B}})$ with $\text{Sec}_{g_{\mathcal{B}}} < 0$. Then \mathcal{E} admits a complete Riemannian metric g_{ε} with

$$
-a \leq \sec_{g_{\mathcal{E}}} \leq -1.
$$

Theorem. (Bishop–O'Neill). There is a complete metric of constant negative curvature on $\mathbb{R} \times \mathcal{F}$, where $\mathcal F$ is any compact Riemannian manifold with a flat metric.

Complex Structures

Definition. An almost complex structure J on a smooth manifold *M* is an endomorphism

$$
\mathcal{J}: TM \to TM, \qquad \qquad \mathcal{J}^2 = -id.
$$

Identify $\mathbb{S}^2 \subset \mathbb{R}^3$ with the space of unit imaginary quaternions Im(\mathbb{H}^3) $\simeq \mathbb{R}^3$. For each point $p \in \mathbb{S}^2$, we get a map $\mathcal{J}_p : T_p \mathbb{S}^2 \to T_p \mathbb{S}^2$ satisfying $\partial_p^2 = -id_{T_p\mathbb{S}^2}$, given by $\partial_p(v) := p \times v$.

In general, an almost complex structure $\mathcal{J} \in \text{End}(TX)$ is not sufficient to yield local holomorphic coordinates. There is an obvious obstruction: Suppose *X* is a complex manifold with holomorphic coordinates $(z_1, ..., z_n)$ centered at a point $p \in X$. The tangent space to X at the point p is the complex vector space:

$$
T_pX = \text{ span}_{\mathbb{C}}\left\{\frac{\partial}{\partial z_1}, ..., \frac{\partial}{\partial z_n}\right\}.
$$

Let *M* be a smooth manifold with almost complex structure β . The condition $\mathcal{J}^2 = -id$ gives an eigenspace splitting

$$
T_p^{\mathbb{C}}M \simeq T_p^{1,0}M \oplus T_p^{0,1}M,
$$

corresponding to the eigenvalues $\sqrt{-1}$ and $-\sqrt{-1}$, respectively.

If $(x_1, ..., x_{2n})$ are smooth coordinates on *M*, then $T_p^{1,0}M$ is spanned by

$$
\frac{\partial}{\partial z_i} \; := \; \frac{\partial}{\partial x_i} - \sqrt{-1} \partial \frac{\partial}{\partial x_i},
$$

and $T_p^{0,1}M$ is spanned by

$$
\frac{\partial}{\partial \overline{z}_i} := \frac{\partial}{\partial x_i} + \sqrt{-1} \partial \frac{\partial}{\partial x_i}.
$$

We have seen this before in the context of vector fields and integral curves:

We have seen this before in the context of vector fields and integral curves:

The integrability condition on the complex structure is merely a higher-dimensional version of this:

The integrability condition on the complex structure is merely a higher-dimensional version of this:

The Frobenius theorem tells us that $T^{1,0}M$ is an integrable subbundle if and only if it is closed under Lie bracket:

$$
[u,v] \subseteq T^{1,0}M, \qquad \forall u,v \in T^{1,0}M.
$$

This manifests as the vanishing of the Nijenhuis tensor:

$$
\mathcal{N}^{\mathcal{J}}(u_0,v_0) \quad := \quad [u_0,v_0] + J([Ju_0,v_0] + [u_0, Jv_0]) - [Ju_0, Jv_0].
$$

Theorem. (Newlander–Nirenberg). An almost complex structure β is integrable if and only if $\mathcal{N}^{\mathcal{J}}\equiv 0$.

We can repeat the almost complex structure construction on \mathbb{S}^2 with \mathbb{S}^6 – identify \mathbb{S}^6 with the space of unit imaginary octonions Im(0). This endows \mathbb{S}^6 with an almost complex structure.

If one computes the Nijenhuis tensor of this almost complex structure, however, it does not vanish precisely because the octonions are not associative.

Definition. A Riemannian metric *g* on a complex manifold (X, \mathcal{J}) is said to be Hermitian if

$$
g(\mathcal{J}u,\mathcal{J}v) = g(u,v), \qquad u,v \in TX.
$$

We say that a Hermitian metric *g* is Kähler if the 2–form

$$
\omega_g(u,v):=g(\mathfrak{J} u,v)
$$

is closed.

Examples

Examples of Kähler Manifolds.

 \dagger Complex projective space \mathbb{P}^n endowed with the Fubini–Study metric.

- \rightarrow Projective manifolds.
- \dagger Euclidean space \mathbb{C}^n endowed with the Euclidean metric.

 \rightarrow Stein manifolds (in particular, pseudoconvex domains).

† A compact complex surface is Kähler if and only if the first Betti number is even.

Examples of non-Kähler Manifolds.

 \rightsquigarrow Hopf surface $\mathbb{S}^1 \times \mathbb{S}^3$ is not Kähler.

Definition. Let $p: \mathfrak{X} \to \mathfrak{S}$ be a surjective proper holomorphic submersion onto a hyperbolic curve with hyperbolic fibers. If there fibers are not all biholomorphic, then we say that $p : \mathcal{X} \to \mathcal{S}$ is a Kodaira Fibration Surface.

The Sectional Curvature is a Riemannian invariant, not a complex-analytic invariant.

Let (*M*, *g*, *J*) be Kähler. Compexifying the Riemannian curvature tensor *R* gives a quadrilinear map *R* on $T^{\mathbb{C}}M \oplus \overline{T^{\mathbb{C}}M}$ with the only non-trivial components given by

 $R(u, \overline{v}, w, \overline{z}),$ $u, v, w, z \in T^{\mathbb{C}}M.$

Hence, the natural Hermitian replacement for the sectional curvature is given by

 $HBC_{\omega}(u, v) := R(u, \overline{u}, v, \overline{v}).$

Set
$$
u = \frac{1}{\sqrt{2}} (u_0 - \sqrt{-1}u_0)
$$
 and $v = \frac{1}{\sqrt{2}} (v_0 - \sqrt{-1}v_0)$.

The Bianchi identity gives

$$
R(u, \overline{u}, v, \overline{v}) = R(v_0, u_0, u_0, v_0) + R(Ju_0, v_0, v_0, Ju_0).
$$

In particular, $R(u, \overline{u}, v, \overline{v})$ is a sum of two sectional curvatures, and we therefore call it the holomorphic bisectional curvature.

The bisectional curvature is obviously weaker than the sectional curvature, but it is still a very restrictive curvature constraint:

Theorem. (Mori, Siu–Yau). A compact Kähler manifold with $HBC > 0$ is biholomorphic to \mathbb{P}^n .

Theorem. (Mohsen). There are compact simply connected projective manifolds with $HBC < 0$.

Of course, Mohsen's examples cannot admit metrics with $\text{Sec} < 0$ by the Cartan–Hadamard theorem.

Question. Let $f : \mathcal{E} \to \mathcal{B}$ be a holomorphic vector bundle, where \mathcal{B} is compact and admits a Hermitian metric ω with c HBC_{ω} < 0. Does $\&$ admit a complete Hermitian metric with $-a \leq {}^{c}HBC \leq -1$, for some constant $a > 1$?

The answer turns out to be false, by a result of F. Zheng:

Theorem. (Zheng). Let $\mathfrak{X} := X \times Y$ be a product complex manifold with *X* compact. Then X does not admit a Hermitian metric ω with c^c HBC_ω < -1.

Theorem. (Yang). Let $\mathcal{F} \hookrightarrow \mathcal{X} \to \mathcal{B}$ be a holomorphic fiber bundle with $\mathcal F$ compact. Then $\mathfrak X$ does not admit a complete Kähler metric with $\text{HBC}_{\omega} \leq -\kappa_0 < 0$.

The following theorem of Fischer and Grauert shows that holomorphic fiber bundles with compact fiber are trivial in the following sense:

Theorem. (Fischer–Grauert). Let $p : \mathcal{X} \to \mathcal{S}$ be a holomorphic family of compact complex manifolds. The fibers of *p* are all biholomorphic if and only if *p* is a holomorphic fiber bundle.

Theorem. (Yang). Let $\mathcal{F} \hookrightarrow \mathcal{X} \to \mathcal{B}$ be a holomorphic fiber bundle with $\mathcal F$ compact. Then $\mathfrak X$ does not admit a complete Kähler metric with $HBC_{\omega} < -\kappa_0 < 0$.

Corollary. Let $p: \mathfrak{X} \to \mathfrak{B}$ be a holomorphic family of compact complex manifolds. If X admits a complete Kähler metric with $HBC_{\omega} < -\kappa_0 < 0$, there must be non-trivial holomorphic variation in the fibers.

The bisectional curvature must be bounded away from zero:

Theorem. (Klembeck). There is a complete Kähler metric on C *n* with $HBC_{\omega} > 0$.

Seshadri gave a small modification of Klembeck's construction, showing:

Theorem. (Seshadri = Klembeck $+\varepsilon$). There is a complete Kähler metric on \mathbb{C}^n with $\text{HBC}_{\omega} < 0$.

Conjecture. Let $f: \mathfrak{X} \to \mathfrak{S}$ be a holomorphic family of complex manifolds. Suppose X admits a complete Hermitian metric with $HBC \leq -\kappa_0 < 0$. Then *f* is not (holomorphically) locally trivial. Theorem. (To–Yeung). Let $p : \mathcal{X} \to \mathcal{S}$ be a Kodaira fibration surface. Then X admits a Kähler metric with $HBC_{\omega} < 0$.

Question. (Mok). Does the bidisk $\mathbb{D}^2 := \mathbb{D} \times \mathbb{D}$ admit a complete Kähler metric with $HBC_{\omega} \leq -\kappa_0 < 0$?

Thanks for listening!