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Classical Bochner Technique

Let (M, g) be a compact Riemannian manifold1. Let α ∈ Ω1
M.

∆dα = (dd∗ + d∗d)α = ∇∗∇α+ Ricg(α], ·).

If α is harmonic, i.e., ∆dα = 0, then

∆d|α|2 = |∇α|2 + Ricg(α], α]).

Theorem. (Bochner). If Ricg > 0, then b1(M) = 0.

1connected and orientable.



Complex-Analytic Bochner Formula

Let (X, ω) be a Hermitian manifold2. Let σ ∈ H0(E) be a holomorphic
section of a holomorphic vector bundle E→ X.

We want to compute ∆ω|σ|2 = trω(
√
−1∂∂̄|σ|2).

2Here, ω is the Hermitian metric, locally described by ω =loc.
√
−1

∑
i,j gijdzi ∧ dzj .

We maintain the convention of abusively denoting the metric by a 2–form of type (1, 1).



Let E→ X be a complex vector bundle.

Reminder. A first-order C–linear differential operator ∂̄E :

H0(E)→ Ω0,1
X ⊗ E is said to be CR operator if

∂̄E(fσ) = ∂̄f ⊗ σ + f ∂̄Eσ.

If, in addition,
∂̄E ◦ ∂̄E = 0,

then we call ∂̄E a holomorphic structure.

Theorem. (Koszul–Malgrange). LetE be a complex vector bun-
dle. Then E is a holomorphic vector bundle if and only if E admits
a holomorphic structure ∂̄E.



Connections on Holomorphic Vector Bundles

If ∂̄E is a holomorphic structure on E, we can complete it to a Hermitian
connection ∇ in the sense that there is a Hermitian connection ∇ such
that

∇0,1 = ∂̄E.

If E = T1,0X, this connection is called the Chern connection.

The Bochner formula for this connection reads:

∆ω|σ|2 = |∇σ|2 −
√
−1〈ΘEσ, σ〉,

where ΘE is the curvature of the Hermitian metric on E.



The Schwarz Lemma

Let f : (X, ωg)→ (Y, ωh) be a holomorphic map between complex
manifolds.

We can identify ∂f with a section ∂f ∈ H0(Ω1,0
X ⊗ f ∗T1,0Y).

Inserting this into the Bochner formula yields

∆ω|∂f |2 = |∇∂f |2 −
√
−1〈ΘΩ1,0

X ⊗f
∗T1,0Y∂f , ∂f 〉.



The curvature splits additively under tensor products:

ΘΩ1,0
X ⊗f

∗T1,0Y = ΘΩ1,0
X ⊗ id + id⊗Θf ∗T1,0Y,

inverts additively under dualization:

ΘΩ1,0
X ⊗f

∗T1,0Y = −ΘT1,0X ⊗ id + id⊗Θf ∗T1,0Y,

and commutes with pullback:

ΘΩ1,0
X ⊗f

∗T1,0Y = −ΘT1,0X ⊗ id + id⊗ f ∗ΘT1,0Y



Schwarz Lemma

The Bochner formula therefore yields

∆ωg |∂f |
2 = |∇∂f |2 + Ricωg ⊗ ω

]
g ⊗ ω]g ⊗ ωh ⊗ ∂f ⊗ ∂f

−Rmωh ⊗ ω
]
g ⊗ ∂f ⊗ ∂f ⊗ ω]g ⊗ ∂f ⊗ ∂f .

In local coordinates, we have

∆ωg |∂f |
2 = |∇∂f |2 + gijRg

ijk`︸ ︷︷ ︸
Ricci

gkqgp`hαβ f
α
p f βq − Rh

αβγδg
ijf αi f βj gpqf γp f δq .

Here f αi := ∂fα
∂zi



Royden’s Polarization Argument

Royden showed that if the target metric is Kähler3, the target curvature
term can be controlled by the holomorphic sectional curvature.

Recall: Let ω is a Kähler metric with underlying complex struc-
ture J. The restriction of the sectional curvature to the J–invariant
2–planes (i.e., 2–planes of the form {u, Ju}) defines the holomor-
phic sectional curvature.

In terms of the curvature tensor,

HSCω(v) := R(v, v, v, v).

3Recall: A Hermitian metric is said to be Kähler if the torsion of the Chern
connection vanishes.



The Holomorphic Sectional Curvature

The holomorphic sectional curvature is very natural to the study of
complex geometry:

(†) (Ahlfors). HSCω < 0 =⇒ X is Brody hyperbolic4

Every entire curve C→ X is constant.

(†) (Yang). HSCω > 0 =⇒ X is rationally connected:

Any two points lie in the image of a rational curve P1 → X.

4If X is compact, this is equivalent to Kobayashi hyperbolicity.



HSCω < 0

C

P1

HSCω > 0



Royden’s Polarization Argument

The argument hinges upon the following polarization argument –
called Royden’s trick:

Proposition. Let ξ1, ..., ξν be ν orthogonal tangent vectors. If
S(ξ, η, ζ, ω) is a symmetric bi-Hermitian form in the sense that
(i) S(ξ, η, ζ, ω) = S(ζ, η, ξ, ω),
(ii) S(η, ξ, ω, ζ) = S(ξ, η, ζ, ω),
such that for all ξ,

S(ξ, ξ, ξ, ξ) ≤ −κ0‖ξ‖4,

for κ0 ≥ 0, then

∑
α,β

S(ξα, ξα, ξβ , ξβ) ≤ −ν + 1
2ν

κ0

(∑
α

‖ξα‖2
)2

.



Royden’s Schwarz Lemma

Theorem. (Royden 1980). Let f : (X, ωg) −→ (Y, ωh)
be a holomorphic map between Kähler manifolds. Suppose
Ricωg ≥ −C1ωg andHSCωh ≤ −κ0 for some constantsC1, κ0 > 0.
Then

∆ωg trωg(f ∗ωh) = ∆ωg |∂f |2 ≥ −2C1 +
r + 1
r κ0|∂f |2,

where r = rank(∂f ).

In particular, if X is compact, then

trωg(f ∗ωh) = |∂f |2 ≤ 2C1r
(r + 1)κ0

.



Aside: Classification of Complex Manifolds

The naive approach to understanding the landscape of complex manifolds
X is to look at holomorphic functions

X −→ C.

One runs into trouble quite fast with this approach, however: If X is
compact, the maximum principle forces all such functions to be constant.



In place of looking at holomorphicmapswhich take values in the trivial
bundle C, it is natural to look at holomorphic maps which takes values
in a holomorphic line bundle L:

X −→ L.

There is only one line bundle intrinsic to a complex manifold, the canonical
bundle

KX := Λn,0
X ,

n = dimC X.



Algebro-Geometric Classification of Complex Manifolds

Understand complex manifolds by means of the existence/abundance of sections
of the canonical bundle KX = Λn,0

X .

KX ample KX trivial K−1
X ample

(general type) (Calabi–Yau) (Fano)



Complex-Analytic Classification of Complex Manifolds

Understand complex manifolds by means of holomorphic curves C→ X and
functions X → C:

Lots of holomorphic
functions
X → C

No holomorphic
functions
X → C

Lots of holomorphic
curves
C→ X

No holomorphic
curves
C→ X

Kobayashi/Brody
hyperbolic
manifolds

Oka/Special
manifolds

Stein
manifolds

Too large



Curvature characterization of Complex Manifolds

Understand complex manifolds by means of metrics with certain curvature
properties:

Ricω < 0 Ricω = 0 Ricω > 0

(general type) (Calabi–Yau) (Fano)



We don’t want to simply understand these distinct means of classification
independently, we want to understand how they are related:

Canonical bundle
KX = Λ

n,0
X

Ricci curvature
Ricω

Existence of curves
C→ X

Holomorphic sectional
curvature
HSCω

? ?
Kobayashi
Conjecture

Wu–Yau
Theorem



The Wu–Yau Theorem

The following result is due to Wong (surfaces), Heier–Lu–Wong
(projective threefolds), Wu–Yau (projective), Tosatti–Yang (Kähler):5

Theorem. Let (X, ω) be a compact Kähler manifold with
HSCω < 0. Then the canonical bundle KX is ample.

In particular, we see that

HSCω < 0 =⇒ ∃ ωϕ = ω +
√
−1∂∂̄ϕ such that Ricωϕ < 0.

5Recall: A line bundle L is ample if the sections of L⊗k (k large) furnish a
holomorphic embedding Φ : X −→ PNk .
In particular, K−1

X is ample if and only if Ricω > 0.



The Kobayashi Conjecture

The Wu–Yau theorem is an important step towards the more general
Kobayashi conjecture:

Conjecture. Let X be a compact Kobayashi hyperbolic manifold.
Then KX is ample.

Remarks:
– (Demailly 1997) Kobayashi hyperbolicity6 is strictly weaker than

the existence of a metric with negative holomorphic sectional curvature.

– Kobayashi (1970) conjectured that a compact Kähler manifold which
is Kobayashi hyperbolic has ample canonical bundle.

6That is, every entire holomorphic curve C→ X is constant.



Curvature Heirarchy

The holomorphic sectional curvature and Ricci curvature occupy similar
strata of the curvature heirarchy7:

HBCω

HSCωRicω

Scalω

(holomorphic bisectional curvature)

(holomorphic sectional curvature)(Ricci curvature)

(Scalar curvature)

7Arrows indicate dominance: i.e., A→ B means that A > 0 =⇒ B > 0, and
similarly for < 0, ≤ 0, ≥ 0, etc.
Recall: HBCω(u, v) = R(u, u, v, v); HSCω(u) = R(u, u, u, u);



Examples

Example 1. (Hitchin). Let Fn := P(1⊕Hn) denote the nth Hirze-
bruch surface (a P1–bundle over P1).

Hitchin showed that Fn admits a Kähler metric ω with HSCω >
0. For n > 1, however, c1(Fn) 6> 0, and thus, does not support a
Kähler metric of positive Ricci curvature.



Example 2. Let

Xd := {zd0 + · · ·+ zdn = 0} ⊆ Pn

denote the degree d Fermat hypersurface.

For d ≥ n+2, adjunction implies that KXd is ample, and thus Xd
admits a Kähler(–Einstein) metric of negative Ricci curvature. But
Xd admits complex lines, and thus, cannot support a metric with
HSCω < 0.



The Schwarz Lemma Revisited

To extend Royden’s argument beyond the Kähler setting, we need to
understand

∆ω|∂f |2 = |∇∂f |2 + gijRg
ijk`g

kqgp`hαβ f
α
p f βq − Rh

αβγδg
ijf αi f βj gpqf γp f δq .

Remarks:
– TheMonge–Ampère equation controls the first Chern–Ricci

cRic(1)ω = gk`Rijk`.

– But the second Chern–Ricci curvature appears in the Schwarz lemma
cRic(2)ω = gijRijk`.

– Royden’s polarization argument requires the curvature of the target metric
to have the symmetry

Rijk` = Rkji`.

In particular, a non-Kähler metric will not support this symmetry in
general.



Target curvature term

To understand the target curvature term

Rh
αβγδg

ijf αi f βj gpqf γp f δq ,

choose a frame such that at a point p ∈ X, gij(p) = δij and f αi = λiδ
α
i , where

λi ∈ R. Then

Rh
αβγδg

ijf αi f βj gpqf γp f δq =
∑
α,γ

Rh
ααγγλ

2
αλ

2
γ .

This motivated Yang–Zheng to introduce the following:

Definition. Let (X, ω) be a Hermitian manifold. The real bisectional
curvature RBCω is the function

RBCω(v) :=
1
|v|2

∑
α,γ

Rααγγvαvγ ,

where v = (v1, ..., vn) ∈ Rn\{0}.



The Real Bisectional Curvature

(i) If the metric is Kähler:
the real bisectional curvature is comparable to the holomorphic
sectional curvature.

(ii) For a general Hermitian metric:
the real bisectional curvature strictly dominates the holomorphic
sectional curvature and scalar curvatures.

(iii) The real bisectional curvature is not strong enough, however, to
control the Ricci curvatures.



Hermitian Schwarz Lemma

Yang–Zheng (2017) proved the following:

Theorem. Let f : (X, ωg) → (Y, ωh) be a holomorphic map be-
tween Hermitian manifolds. Suppose Ric(2)

ωg
≥ −C1ωg + C2f ∗ωh

for constants C1,C2, where C2 ≥ 0. If RBCωh ≤ −κ0 ≤ 0, then

∆ωg log |∂f |2 ≥ −C1 +
1
r (C2 + κ0)|∂f |2.

Hence, if X is compact,

|∂f |2 ≤ C1r
(C2 + κ0)

.



The previous argument for the Wu–Yau theorem can be applied to
show that

Corollary. (Yang–Zheng). Let X be a compact Kähler manifold
with aHermitian metric of negative real bisectional curvature. Then
KX is ample.


