Recent developments concerning the Schwarz Lemma with applications to the Wu–Yau Theorem

Kyle Broder

Australian National University & Beijing International Center for Mathematical Research Joint work with:

- James Stanfield (the University of Queensland).
- Kai Tang (Zhejiang University).
- Simone Diverio (Sapienza Università di Roma)

Classical Bochner Technique

Let (M,g) be a compact Riemannian manifold $^1.$ Let $\alpha \in \Omega^1_M.$

 $\Delta_d \alpha = (dd^* + d^*d)\alpha = \nabla^* \nabla \alpha + \text{Ric}_g(\alpha^{\sharp}, \cdot).$

If α is *harmonic*, i.e., $\Delta_d \alpha = 0$, then

$$
\Delta_d |\alpha|^2 = |\nabla \alpha|^2 + \text{Ric}_g(\alpha^{\sharp}, \alpha^{\sharp}).
$$

Theorem. (Bochner). If $\text{Ric}_g > 0$, then $b_1(M) = 0$.

¹ connected and orientable.

Let (X,ω) be a Hermitian manifold². Let $\sigma\in H^0(\mathcal{E})$ be a *holomorphic section* of a *holomorphic vector bundle* $\mathcal{E} \rightarrow X$.

We want to compute $\Delta_{\omega}|\sigma|^2 = \text{tr}_{\omega}$ √ $\overline{-1}\partial\bar{\partial}|\sigma|^2$).

²Here, ω is the Hermitian metric, locally described by $\omega=_{\text{loc.}}$ √ −1 P *i*,*j gij dzⁱ* ∧ *dz^j* . We maintain the convention of abusively denoting the metric by a 2–form of type $(1, 1)$.

Let $\mathcal{E} \to X$ be a complex vector bundle.

Reminder. A *first-order* C–linear differential operator ∂^{ε} $H^0(\mathcal{E})\rightarrow \Omega^{0,1}_X$ $\chi^{0,1}_X\otimes \mathcal{E}$ is said to be *CR operator* if

 $\bar{\partial}^{\varepsilon}(f\sigma) = \bar{\partial} f \otimes \sigma + f \bar{\partial}^{\varepsilon} \sigma.$

If, in addition,

$$
\bar{\partial}^{\epsilon} \circ \bar{\partial}^{\epsilon} = 0,
$$

then we call $\bar{\partial}^{\varepsilon}$ a *holomorphic structure*.

Theorem. (Koszul–Malgrange). Let \mathcal{E} be a complex vector bundle. Then E is a *holomorphic vector bundle* if and only if E *admits a holomorphic structure* ∂^{ε} .

Connections on Holomorphic Vector Bundles

If ∂¯^E is a *holomorphic structure* on E, we can complete it to a *Hermitian connection* ∇ in the sense that there is a Hermitian connection ∇ such that

$$
\nabla^{0,1}=\bar\partial^{\mathcal{E}}.
$$

If $\mathcal{E} = T^{1,0}X$, this connection is called the *Chern connection*.

The *Bochner formula* for this connection reads:

$$
\Delta_{\omega}|\sigma|^2 = |\nabla \sigma|^2 - \sqrt{-1} \langle \Theta^{\varepsilon} \sigma, \sigma \rangle,
$$

where Θ^{ε} is the curvature of the Hermitian metric on ε .

The Schwarz Lemma

Let $f:(X,\omega_g)\to (Y,\omega_h)$ be a *holomorphic map between complex manifolds.*

We can identify ∂f with a section $\partial f \in H^0(\Omega^{1,0}_X \otimes f^*T^{1,0}Y).$

Inserting this into the *Bochner formula* yields

$$
\Delta_{\omega}|\partial f|^2 = |\nabla \partial f|^2 - \sqrt{-1} \langle \Theta^{\Omega_X^{1,0} \otimes f^* T^{1,0} Y} \partial f, \partial f \rangle.
$$

The curvature *splits additively under tensor products*:

$$
\Theta^{\Omega_X^{1,0}\otimes f^*T^{1,0}Y}=\Theta^{\Omega_X^{1,0}}\otimes id+id\otimes\Theta^{f^*T^{1,0}Y},
$$

inverts additively under dualization:

$$
\Theta^{\Omega_X^{1,0} \otimes f^* T^{1,0} Y} = - \Theta^{T^{1,0} X} \otimes \mathrm{id} + \mathrm{id} \otimes \Theta^{f^* T^{1,0} Y},
$$

and *commutes with pullback*:

$$
\Theta^{\Omega_X^{1,0} \otimes f^* T^{1,0} Y} = - \Theta^{T^{1,0} X} \otimes \mathrm{id} + \mathrm{id} \otimes f^* \Theta^{T^{1,0} Y}
$$

Schwarz Lemma

The *Bochner formula* therefore yields

$$
\Delta_{\omega_g}|\partial f|^2 = |\nabla \partial f|^2 + \text{Ric}_{\omega_g} \otimes \omega_g^{\sharp} \otimes \omega_g^{\sharp} \otimes \omega_h \otimes \partial f \otimes \overline{\partial f} \n-\text{Rm}_{\omega_h} \otimes \omega_g^{\sharp} \otimes \partial f \otimes \overline{\partial f} \otimes \omega_g^{\sharp} \otimes \partial f \otimes \overline{\partial f}.
$$

In local coordinates, we have
\n
$$
\Delta_{\omega_g} |\partial f|^2 = |\nabla \partial f|^2 + g^{i\bar{j}} R^g_{i\bar{j}k\bar{\ell}} g^{k\bar{q}} g^{p\bar{\ell}} h_{\alpha\bar{\beta}} f_p^{\alpha} \overline{f_q^{\beta}} - R^h_{\alpha\bar{\beta}\gamma\bar{\delta}} g^{i\bar{j}} f_i^{\alpha} \overline{f_j^{\beta}} g^{p\bar{q}} f_p^{\gamma} \overline{f_q^{\delta}}.
$$
\nRicci

Here
$$
f_i^{\alpha} := \frac{\partial f^{\alpha}}{\partial z_i}
$$

Royden's Polarization Argument

Royden showed that if the *target metric is Kähler*³ , the target curvature term can be controlled by the *holomorphic sectional curvature*.

Recall: Let ω is a Kähler metric with underlying complex structure *J*. The restriction of the *sectional curvature* to the *J*–invariant 2–planes (i.e., 2–planes of the form {*u*, *Ju*}) defines the *holomorphic sectional curvature*.

In terms of the curvature tensor,

 $HSC_{\omega}(v) := R(v, \overline{v}, v, \overline{v}).$

 3 Recall: A Hermitian metric is said to be Kähler if the torsion of the Chern connection vanishes.

The Holomorphic Sectional Curvature

The *holomorphic sectional curvature* is very natural to the study of complex geometry:

(†) (Ahlfors). HSC ω < 0 \implies *X* is *Brody hyperbolic*⁴

Every entire curve $\mathbb{C} \to X$ *is constant.*

(†) (Yang). $HSC_{\omega} > 0 \implies X$ is *rationally connected*:

Any two points lie in the image of a rational curve $\mathbb{P}^1 \to \mathrm{X}.$

⁴ If *X* is compact, this is equivalent to Kobayashi hyperbolicity.

Royden's Polarization Argument

The argument hinges upon the following polarization argument – called *Royden's trick*:

Proposition. Let $\xi_1, ..., \xi_{\nu}$ be ν orthogonal tangent vectors. If $S(\xi, \overline{\eta}, \zeta, \overline{\omega})$ is a *symmetric bi-Hermitian form* in the sense that (i) $S(\xi, \overline{\eta}, \zeta, \overline{\omega}) = S(\zeta, \overline{\eta}, \xi, \overline{\omega})$, (ii) $S(\eta, \overline{\xi}, \omega, \overline{\zeta}) = \overline{S}(\xi, \overline{\eta}, \zeta, \overline{\omega})$, such that for all ξ ,

$$
S(\xi, \overline{\xi}, \xi, \overline{\xi}) \ \leq \ -\kappa_0 \|\xi\|^4,
$$

for $\kappa_0 \geq 0$, then

$$
\sum_{\alpha,\beta} S(\xi_\alpha,\overline{\xi}_\alpha,\xi_\beta,\overline{\xi}_\beta) \ \leq \ -\frac{\nu+1}{2\nu} \kappa_0 \left(\sum_\alpha \|\xi_\alpha\|^2\right)^2.
$$

Theorem. (Royden 1980). Let $f : (X, \omega_g) \longrightarrow (Y, \omega_h)$ be a holomorphic map between *Kähler manifolds*. Suppose ${\rm Ric}_{\omega_g}\geq -C_1\omega_g$ and $\mathrm{HSC}_{\omega_h}\leq -\kappa_0$ for some constants $C_1,\kappa_0>0.$ Then

$$
\Delta_{\omega_g} \text{tr}_{\omega_g} (f^* \omega_h) = \Delta_{\omega_g} |\partial f|^2 \geq -2C_1 + \frac{r+1}{r} \kappa_0 |\partial f|^2,
$$

where $r = \text{rank}(\partial f)$.

In particular, if *X* is compact, then

$$
\mathop{\rm tr}\nolimits_{\omega_g} (f^*\omega_h) \;=\; |\partial f|^2 \leq \frac{2C_1r}{(r+1)\kappa_0}.
$$

The naive approach to *understanding the landscape of complex manifolds X* is to look at *holomorphic functions*

 $X \longrightarrow \mathbb{C}$.

One runs into trouble quite fast with this approach, however: If *X* is compact, the *maximum principle forces all such functions to be constant*.

In place of looking at holomorphic maps which take values in the *trivial bundle* C, it is natural to look at holomorphic maps which *takes values in a holomorphic line bundle* L:

$$
X\longrightarrow \mathcal{L}.
$$

There is only one *line bundle intrinsic to a complex manifold*, the *canonical bundle*

$$
K_X:=\Lambda_X^{n,0},
$$

 $n = \dim_{\mathbb{C}} X$.

Algebro-Geometric Classification of Complex Manifolds

Understand complex manifolds by means of the *existence/abundance of sections of the canonical bundle* $K_X = \Lambda_X^{n,0}$.

Complex-Analytic Classification of Complex Manifolds

Understand complex manifolds by means of *holomorphic curves* $\mathbb{C} \to X$ and *functions* $X \to \mathbb{C}$:

Curvature characterization of Complex Manifolds

Understand complex manifolds by means of *metrics with certain curvature properties*:

We don't want to simply understand these *distinct means of classification* independently, we want to understand *how they are related*:

The Wu–Yau Theorem

The following result is due to Wong (surfaces), Heier–Lu–Wong (projective threefolds), Wu–Yau (projective), Tosatti–Yang (Kähler):⁵

Theorem. Let (X, ω) be a compact Kähler manifold with $HSC_{\omega} < 0$. Then the canonical bundle K_X is ample.

In particular, we see that

 $\text{HSC}_{\omega} < 0 \implies \exists \ \omega_{\varphi} = \omega +$ √ $\overline{-1}\partial\bar{\partial}\varphi$ such that $\text{Ric}_{\omega_{\varphi}} < 0$.

 5 Recall: A line bundle ${\mathcal{L}}$ is ample if the sections of ${\mathcal{L}}^{\otimes k}$ $(k$ large) furnish a holomorphic embedding $\Phi: X \longrightarrow \mathbb{P}^{N_k}.$ In particular, $K_{\rm X}^{-1}$ χ ¹ is ample if and only if Ric $\omega > 0$.

The Wu–Yau theorem is an important step towards the more general *Kobayashi conjecture:*

Conjecture. Let *X* be a *compact Kobayashi hyperbolic manifold*. Then *K^X is ample*.

Remarks:

- (Demailly 1997) Kobayashi hyperbolicity⁶ is *strictly weaker* than the *existence of a metric with negative holomorphic sectional curvature*.
- Kobayashi (1970) conjectured that a *compact Kähler manifold which is Kobayashi hyperbolic has ample canonical bundle*.

⁶That is, every entire holomorphic curve $\mathbb{C} \to X$ is constant.

Curvature Heirarchy

The *holomorphic sectional curvature* and *Ricci curvature* occupy similar strata of the curvature heirarchy $^7\!\! :$

⁷Arrows indicate dominance: i.e., $A \rightarrow B$ means that $A > 0 \implies B > 0$, and similarly for $< 0, \leq 0, \geq 0$, etc. Recall: $HBC_{\omega}(u, v) = R(u, \overline{u}, v, \overline{v})$; $HSC_{\omega}(u) = R(u, \overline{u}, u, \overline{u})$;

Example 1. (Hitchin). Let $\mathcal{F}_n := \mathbb{P}(1 \oplus H^n)$ denote the *nth Hirzebruch surface* (a \mathbb{P}^1 -bundle over \mathbb{P}^1).

Hitchin showed that \mathcal{F}_n admits a Kähler metric ω with HSC_{ω} > 0. For $n > 1$, however, $c_1(\mathcal{F}_n) \not> 0$, and thus, *does not support a Kähler metric of positive Ricci curvature*.

Example 2. Let

$$
X_d := \{z_0^d + \cdots + z_n^d = 0\} \subseteq \mathbb{P}^n
$$

denote the degree *d Fermat hypersurface*.

For $d\geq n+2$, adjunction implies that K_{X_d} is ample, and thus X_d *admits a Kähler(–Einstein) metric of negative Ricci curvature*. But *Xd admits complex lines*, and thus, cannot support a metric with $HSC_{\omega} < 0.$

To extend *Royden's* argument beyond the Kähler setting, we need to understand

$$
\Delta_{\omega}|\partial f|^2=|\nabla\partial f|^2+g^{i\bar{j}}R^g_{i\bar{j}k\bar{\ell}}g^{k\bar{q}}g^{p\bar{\ell}}h_{\alpha\bar{\beta}}f^{\alpha}_{p}\overline{f^{\beta}_{q}}-R^h_{\alpha\bar{\beta}\gamma\bar{\delta}}g^{i\bar{j}}f^{\alpha}_{i}\overline{f^{\beta}_{j}}g^{p\bar{q}}f^{\gamma}_{p}\overline{f^{\delta}_{q}}.
$$

Remarks:

– The *Monge–Ampère equation* controls the *first Chern–Ricci*

$$
{}^{c} \text{Ric}_{\omega}^{(1)} = g^{k \overline{\ell}} R_{i \overline{j} k \overline{\ell}}.
$$

– But the *second Chern–Ricci curvature* appears in the Schwarz lemma

$$
{}^{c} \text{Ric}^{(2)}_{\omega} = g^{i\bar{j}} R_{i\bar{j}k\bar{\ell}}.
$$

– *Royden's polarization argument* requires the curvature of the target metric to have the symmetry

$$
R_{i\bar{j}k\bar{\ell}} = R_{k\bar{j}i\bar{\ell}}.
$$

In particular, a non-Kähler metric will *not support this symmetry* in general.

Target curvature term

To understand the target curvature term

 R_c^h $\frac{h}{\alpha\overline{\beta}\gamma\overline{\delta}}g^{ij}\!f_i^{\alpha}$ $\int_i^\alpha f_j^\beta$ j ^{, β} g ^{p \bar{q}} f_{p}^{γ} *p f* δ *q* ,

choose a frame such that at a point $p \in X$, $g_{i\bar{j}}(p) = \delta_{ij}$ and $f_i^{\alpha} = \lambda_i \delta_i^{\alpha}$ $\int\limits_l^\alpha$, where $\lambda_i \in \mathbb{R}$. Then

$$
R^h_{\alpha\overline\beta\gamma\overline\delta}g^{i\overline j}f^{\alpha}_if^{\overline\beta}_{j}g^{p\overline q}f^{\gamma}_{p}\overline{f^{\delta}_{q}}\;=\;\sum_{\alpha,\gamma}R^h_{\alpha\overline\alpha\gamma\overline\gamma}\lambda^2_{\alpha}\lambda^2_{\gamma}.
$$

This motivated Yang–Zheng to introduce the following:

Definition. Let (X, ω) be a Hermitian manifold. The *real bisectional curvature* RBC_{ω} is the function

$$
\text{RBC}_{\omega}(v):=\frac{1}{|v|^2}\sum_{\alpha,\gamma}R_{\alpha\overline{\alpha}\gamma\overline{\gamma}}v_{\alpha}v_{\gamma},
$$

where $v = (v_1, ..., v_n) \in \mathbb{R}^n \backslash \{0\}.$

The Real Bisectional Curvature

(i) If the metric is *Kähler*:

the *real bisectional curvature* is *comparable* to the *holomorphic sectional curvature*.

- (ii) For a general Hermitian metric: the *real bisectional curvature strictly dominates* the *holomorphic sectional curvature* and *scalar curvatures*.
- (iii) The *real bisectional curvature* is *not strong enough*, however, to control the *Ricci curvatures*.

Yang–Zheng (2017) proved the following:

Theorem. Let $f : (X, \omega_g) \to (Y, \omega_h)$ be a holomorphic map between *Hermitian manifolds.* Suppose $\text{Ric}_{\omega_g}^{(2)} \geq -C_1 \omega_g + C_2 f^* \omega_h$ for constants C_1, C_2 , where $C_2 \geq 0$. If $\text{RBC}_{\omega_h} \leq -\kappa_0 \leq 0$, then

$$
\Delta_{\omega_g} \log |\partial f|^2 \geq -C_1 + \frac{1}{r} (C_2 + \kappa_0) |\partial f|^2.
$$

Hence, if *X* is compact,

$$
|\partial f|^2 \leq \frac{C_1 r}{(C_2 + \kappa_0)}.
$$

The previous argument for the Wu–Yau theorem can be applied to show that

Corollary. (Yang–Zheng). Let *X* be a *compact Kähler manifold* with a *Hermitian metric* of *negative real bisectional curvature*. Then *K^X is ample*.