Tutorial Quiz 2018

MATH1014 - Mathematics and Applications 2

Tutorial Quiz 3 Calculus and Linear Algebra

> Reading time: 1 minute Writing time: 12 minutes

 Student Name:

 University ID:

Question and Answer Book

Structure of Book

Number of	Number of questions	Number of
questions	to be answered	marks
1	1	10

• Students are NOT permitted any calculators or notes during the quiz.

• Students are NOT permitted to colaborate in any form during the quiz. Any signs of collaboration or cheating will result in a nullified score and the course convenor will be informed of any academic misconduct.

Materials supplied

- Question and answer booklet of 5 pages.
- Working space is provided throughout the booklet.

Instructions

- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer **all** questions in the space provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

Let V be an \mathbb{R} -vector space. That is, V is a set such that

- (i) (Vector addition). $v_1 + v_2 \in V$ for all $v_1, v_2 \in V$.
- (ii) (Scalar multiplication). $\lambda v \in V$ for all $v \in V$, $\lambda \in \mathbb{R}$.
- (a) Determine which of the following sets are vector spaces. No justification is required if they are. If they are not, justify exactly which condition fails.

(i) \mathbb{R}^n . (Euclidean *n*-space).

(ii) \mathbb{C} . (The complex plane).

(iii) \mathbb{N} . (The natural numbers).

[1 mark].

 $\mathbf{2}$

[1 mark].

[1 mark].

[1 man].

(iv) \mathbb{Z} . (The integers).

(b) Show that every vector space V contains the zero vector.[Hint: Use the definition given at the start of the Question]. [2 marks].

(c) Suppose that V_1 is a subset of V_2 , where V_2 is an \mathbb{R} -vector space. What does it mean for V_1 to be a subspace of V_2 ? [1 mark].

(d) Let $\mathscr{C}(\mathbb{R})$ denote the space of continuous functions $f : \mathbb{R} \longrightarrow \mathbb{R}$. It is clear that $\mathscr{C}(\mathbb{R})$ forms an \mathbb{R} -vector space. Let $\mathscr{C}^1(\mathbb{R})$ denote the space of continuously differentiable functions $f : \mathbb{R} \longrightarrow \mathbb{R}$. In other words, elements of $\mathscr{C}^1(\mathbb{R})$ are functions which are differentiable, and whose derivative is continuous. Show that $\mathscr{C}^1(\mathbb{R})$ is a subspace of $\mathscr{C}(\mathbb{R})$. [2 marks].

(e) Provide an example of a function which lies in $\mathscr{C}(\mathbb{R})$, but not in $\mathscr{C}^1(\mathbb{R})$. [1 mark].