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The results of this talk are based on joint work with James Stanfield and
some work in preparation with Frédéric Campana.
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The Unit Disk D

The unit disk D := {z ∈ C : |z| < 1} in the complex plane has a number of
remarkable properties:

(1) Every holomorphic map C→ D is constant.

(2) There is a complete metric on D with curvature bounded above by a
negative constant.

(3) There is a distance function KD for which the automorphisms of D are
isometries and holomorphic self-maps f : D→ D are decreasing in the
sense that f ∗KD ≤ KD.

(4) The canonical bundle KS = Λ1,0
S of a curve S universally covered by D

is ample.

Statement (1) is just the classical Liouville theorem from one complex
variable. The metric in statement (2) is the Poincaré metric of constant
Gauss curvature −4. Statement (3) is a consequence of the Schwarz–Pick
lemma, where KD is the distance function obtained from integrating the
Poincaré metric. Statement (4) is a consequence of the uniformization
theorem and Riemann–Roch.
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Each of these properties has been used to define classes of ‘hyperbolic’
complex manifolds. A complex manifold X is said to be

(1̂) Brody hyperbolic if every holomorphic map C→ X is constant.

(2̂) Negatively curved if there is a Hermitian metric with holomorphic
sectional curvature bounded above by a negative constant.

(3̂) Kobayashi hyperbolic if the Kobayashi pseudodistance KX is
non-degenerate.

(4̂) Canonically polarized if the canonical bundle KX := Λn,0
X is ample.

(1̂) was introduced by Brody (1978). The holomorphic sectional curvature
of a Hermitian metric was introduced by Bochner (1947).
Grauert–Reckziegel (1965) used the Ahlfors–Schwarz lemma to show that
(2̂) =⇒ (1̂). The Kobayashi pseudodistance KX was introduced by
Kobayashi (1968). The Kobayashi pseudodistance is invariant in the sense
that automorphisms of X are isometries for KX. It also has the property
that holomorphic maps f : X → Y are decreasing in the sense that
f ∗KY ≤ KX. Since KC ≡ 0, if f : C→ X is a non-constant holomorphic map,
then f ∗KX ≤ KC ≡ 0; in particular, (3̂) =⇒ (1̂). Brody (1978) showed that
for compact complex manifolds, (1̂) ⇐⇒ (3̂).
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Greene–Wu (1979) showed that (2̂) =⇒ (3̂) by estimating KX directly.
Recall that the canonical bundle KX of a compact complex manifold X
ample if the sections of K⊗`

X furnish an embedding Φ : X → PN` . The
manifolds in (4̂) are all projective algebraic. It is clear that condition (4̂) is
the weakest. The standard example to bring to mind is the Fermat
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Fd := {zd0 + · · ·+ zdn = 0} ⊂ Pn

of degree d > n + 1.
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X furnish an embedding Φ : X → PN` . The
manifolds in (4̂) are all projective algebraic. It is clear that condition (4̂) is
the weakest. The standard example to bring to mind is the Fermat
hypersurface

Fd := {zd0 + · · ·+ zdn = 0} ⊂ Pn

of degree d > n + 1.
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The main purpose of this talk is to present the most general evidence for
the following conjecture of Kobayashi (1970) and Lang (1986).

Conjecture. Let X be a compact Kobayashi hyperbolic Kähler
manifold. Then the canonical bundle KX is ample.

Recall that a complex manifold X is Kähler if it admits a Hermitian metric
g such that the 2-form ω(·, ·) := g(J·, ·) is closed.

A positive resolution of the Kobayashi–Lang conjecture has a number of
profound implications:

(i) All compact Kobayashi hyperbolic Kähler manifolds are projective.

(ii) By the Aubin–Yau theorem (1976), all compact Kobayashi hyperbolic
Kähler manifolds admit Kähler–Einstein metrics of negative Ricci
curvature.
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Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds,
universal covers, and fiber spaces (i.e., if the base and fibers are
hyperbolic, then the total space is hyperbolic).

• A fiber space is understood to mean a surjective holomorphic map with connected fibers.

7



Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds,
universal covers, and fiber spaces (i.e., if the base and fibers are
hyperbolic, then the total space is hyperbolic).

• A fiber space is understood to mean a surjective holomorphic map with connected fibers.

7



Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds,
universal covers, and fiber spaces (i.e., if the base and fibers are
hyperbolic, then the total space is hyperbolic).

• A fiber space is understood to mean a surjective holomorphic map with connected fibers.

7



Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds,
universal covers, and fiber spaces (i.e., if the base and fibers are
hyperbolic, then the total space is hyperbolic).

• A fiber space is understood to mean a surjective holomorphic map with connected fibers.

7



Examples of Kobayashi hyperbolic manifolds

We will be exclusively interested in compact Kobayashi hyperbolic
manifolds. Hence, a compact complex manifold X is Kobayashi hyperbolic
if every holomorphic map C→ X is constant.

Examples:

• Compact quotients of bounded domains Ω ⊂ Cn.

• A generic smooth hypersurface of degree d ≥ 16n3(5n + 4) in Pn+1.
• This lower bound is due to Bérczi–Kirwan (2023); building on the work of Siu (2015),

Brotbek (2017), Deng (2017), Demailly (2018), and others.

• Kobayashi hyperbolicity is inherited by products, submanifolds,
universal covers, and fiber spaces (i.e., if the base and fibers are
hyperbolic, then the total space is hyperbolic).

• A fiber space is understood to mean a surjective holomorphic map with connected fibers.

7



The techniques to address the Kobayashi–Lang conjecture (and its folklore
generalization) vastly diverge depending on the additional assumptions one
places on the manifold.

(1) Assumptions on the canonical bundle, where the techniques are largely
algebro-geometric.

(2) Surfaces, where the focus is on producing rational curves on class VII0
surfaces with b2 ≥ 3.

(3) Threefolds, where the focus is on the geometry of the Kähler cone K

of Calabi–Yau threefolds with b2 ≤ 13.

(4) Curvature assumptions, where the focus is on removing the presence of
a Kähler structure.
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The Kähler cone of a compact Kähler manifold X is the open convex cone

K = {{ω} ∈ H1,1(X,R) : ω is a Kähler form on X}.

The closure of the Kähler cone K defines the nef cone.

The canonical bundle KX is ample if c1(KX) ∈ K . This is equivalent
(Aubin–Yau, 76) to the existence of a Kähler–Einstein metric ωKE with
Ric(ωKE) = −ωKE. The canonical bundle KX is nef if c1(KX) ∈ K . This is
equivalent to the Kähler–Ricci flow existing for all time (Tian–Zhang, 2006).
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Mori (1982) showed that a projective manifold with no rational curves (i.e.,
every holomorphic map P1 → X is constant) has KX nef. This was extended
to compact Kähler threefolds by Höring–Peternell (2016). In particular,
projective Kobayashi hyperbolic manifolds (or compact Kähler manifolds of
dimC X ≤ 3) have nef canonical bundle.

The (Kähler extension of the) abundance conjecture predicts that KX being
nef is equivalent to KX being semi-ample, i.e., the sections of K⊗`

X , for some
` ∈ N, define a surjective holomorphic map Φ : X → Y ⊂ PN` with
connected fibers (a fiber space). This is known for projective manifolds of
dimension ≤ 3 (Kawamata, Kollár, Miyaoka, and others).

We refer to Φ : X → Y as the Iitaka map.

• The smooth fibers of Φ are compact Kähler with holomorphically
torsion canonical bundle, i.e., K⊗`

Xs
' OXs for some ` ∈ N.

• The base Y is a normal projective variety whose dimension is the
Kodaira dimension κX of X.
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If X is a compact Kobayashi hyperbolic manifold with κX = dimC X, the
Iitaka map Φ : X → Y is a bimeromorphic map. Hence, X is Moishezon
(bimeromorphic to a projective variety), and since X has no rational curves,
it is projective (BCHM 2010, Cascini 2013). From the base-point-free
theorem and the relative cone theorem (Mori 1982, Kawamata 1985,
Kollár–Miyaoka–Mori 1992), KX is ample. Hence, compact Kobayashi
hyperbolic manifolds with κX = dimC X have ample canonical bundle (X.
Yang 2020).

If X is projective Kobayashi hyperbolic with κX < dimC X, it suffices to rule
out the hyperbolicity of the smooth fibers of the Iitaka map, which are
projective manifolds with holomorphically torsion canonical bundle.
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hyperbolic manifolds with κX = dimC X have ample canonical bundle (X.
Yang 2020).

If X is projective Kobayashi hyperbolic with κX < dimC X, it suffices to rule
out the hyperbolicity of the smooth fibers of the Iitaka map, which are
projective manifolds with holomorphically torsion canonical bundle.
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The universal cover of a compact Kähler manifold with holomorphically
torsion canonical bundle splits as a product of Euclidean, Calabi–Yau, and
hyperkähler factors (Bogomolov 1974, Beauville 1983).

• A simply connected projective manifold X is said to be Calabi–Yau if
KX ' OX and H0(X,Ω•

X) = C⊕ Cα, where α is a generator of KX.

• A simply connected compact complex manifold is hyperkähler if
H0(X,Ω•

X) = C[σ], where σ ∈ H0(X,Ω2
X) is everywhere non-degenerate.

Verbitsky (2015) showed that hyperkähler manifolds with b2 > 3 are not
hyperbolic. It is conjectured that all hyperkähler manifolds have b2 > 3.

The non-hyperbolicity of K3 surfaces was shown by Wong (1981) and
Campana (1991).

If a Kobayashi hyperbolic Calabi–Yau threefold exists, it would be forced to
satisfy: b2 ≤ 13, together with several constraints on its second Chern class
c2(X) and its Kähler cone K (Wilson 1989, Peternell 1991,
Heath-Brown–Wilson 1992, Diverio–Ferretti 2012, and others). If the
Kawamata–Morrison cone conjecture holds, then b2 = 1 (Diverio 2013).
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Non-Kähler Surfaces

While the Kobayashi–Lang conjecture is only asserted in the category of
compact Kähler manifolds, it is a matter of folklore that the conjecture
should hold for all compact Kobayashi hyperbolic manifolds.

It is true for non-Kähler compact complex surfaces with b2 < 3 (Bogomolov
1976, Li–Yau–Zheng 1994, Teleman 1994, 2005, 2009). Further, if the global
spherical shell conjecture holds, then this would imply the folklore
conjecture in dimension two (Dloussky–Oeljeklaus–Toma 2003).
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Curvature Aspects of Hyperbolicity

Let X be a complex manifold. Let g be a Hermitian metric, locally
described in a coordinate chart (z1, ..., zn) by

g =
∑
k,`

gk ¯̀dz
k ⊗ dz̄`,

where gk ¯̀ = g
(
∂
∂zk
, ∂
∂z̄`

)
is a Hermitian matrix.

The Chern curvature tensor of g is the (0, 4)–tensor whose components are
locally given by

Rījk ¯̀ = − ∂2gk ¯̀
∂zi∂z̄j

+ gpq̄
∂gkq̄
∂zi

∂gp¯̀

∂z̄j
.

The holomorphic sectional curvature of a Hermitian metric g is defined

HSCg(ξ) =
1
|v|4g

∑
i,j,k,`

Rījk ¯̀ξ
iξ

j
ξkξ

`
,

where ξ ∈ T1,0X.
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Examples of compact complex manifolds with HSC < 0:

• The Bergman metric on compact quotients of a bounded symmetric
domain.

• Inherited by submanifolds, products, and submersions, i.e., if the base
and fiber of a holomorphic submersion have HSC< 0, then so does the
total space (Cheung 1988).

• (Mohsen 2022). Let X be a projective manifold with dimC X = n. If
n ≥ 3d, then for every sufficiently large k, there is a complete
intersection Y of dimension d defined by equations of degree k which
has HSC < 0.

The holomorphic sectional curvature (of a Kähler metric) dominates the
scalar curvature. But, in general, it only dominates the sum of the scalar
curvatures Scalg + S̃calg, where Scalg := gījgk ¯̀Rījk ¯̀ and S̃calg := gi ¯̀gk̄jRījk ¯̀.

Hirzebruch surfaces Fn := P(OP1 ⊕ OP1(n)) for n > 1 have Kähler metrics
with HSC > 0 but no Kähler metrics of positive Ricci curvature (Hitchin
1975).
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Conjecture. (Yau). Let X be a compact Kähler manifold with a
Hermitian metric of negative holomorphic sectional curvature. Then,
the canonical bundle KX is ample.

This is a non-exhaustive case of the Kobayashi–Lang conjecture. Demailly
(1997) showed that not every projective Kobayashi hyperbolic manifold
admits a Hermitian metric of negative holomorphic sectional curvature.

Heier–Lu–Wong (2010) showed that a projective threefold with a Kähler
metric of HSCĝ < 0 has ample canonical bundle. Wu–Yau (2016) later
developed a general strategy to show that a projective manifold (of any
dimension) with a Kähler metric of HSCĝ < 0 has ample KX. The projective
assumption was later relaxed to compact Kähler by Tosatti–Yang (2017). A
Kähler–Ricci flow proof was given by later given by Nomura (2017).
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assumption was later relaxed to compact Kähler by Tosatti–Yang (2017). A
Kähler–Ricci flow proof was given by later given by Nomura (2017).

16



Conjecture. (Yau). Let X be a compact Kähler manifold with a
Hermitian metric of negative holomorphic sectional curvature. Then,
the canonical bundle KX is ample.

This is a non-exhaustive case of the Kobayashi–Lang conjecture. Demailly
(1997) showed that not every projective Kobayashi hyperbolic manifold
admits a Hermitian metric of negative holomorphic sectional curvature.

Heier–Lu–Wong (2010) showed that a projective threefold with a Kähler
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metric of HSCĝ < 0 has ample canonical bundle. Wu–Yau (2016) later
developed a general strategy to show that a projective manifold (of any
dimension) with a Kähler metric of HSCĝ < 0 has ample KX. The projective
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The Wu–Yau Strategy

The Wu–Yau strategy makes use of the Kähler cone K to produce a
sequence of metrics with Ricci curvature bounded from below.

Proceed by contradiction and suppose that KX is not nef, i.e., c1(KX) 6∈ K .
Then for some ε0 > 0, the cohomology class ε0{ω0}+ c1(KX) lies on the
boundary of the nef cone K .

Hence, for any ε > 0, we have a
Kähler class (ε+ ε0){ω0}+ c1(KX).
By the Aubin–Yau theorem, we have
a sequence of Kähler metrics

ωε := (ε+ ε0)ω0 − Ric(ω0) +
√
−1∂∂̄uε,

which solve the
complex Monge–Ampère equation

ωn
ε = euεωn

0 .
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Differentiating the Monge–Ampère equation ωn
ε = euεωn

0 implies that

Ric(ωε) = −
√
−1∂∂̄uε + Ric(ω0) = −ωε + (ε+ ε0)ω0.

We will obtain the desired contradiction by getting all higher-order
estimates on ωε so that we can extract a smooth limit as ε↘ 0.

This will yield a Kähler metric representing ε0{ω0}+ c1(KX), which
contradicts the assumption that this is not a Kähler class.

The crux of the argument is the Schwarz lemma, i.e., an estimate on
trωε(f ∗ω̂), where f = id : (X, ωε)→ (X, ω̂) is the identity map and ω̂ is the
Kähler metric of negative holomorphic sectional curvature.
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The Schwarz Lemma

Let us write f = id : (X, ωε)→ (X, ω̂) for the identity map. Write the
derivative locally as ∂f = f αi dzi ⊗ ∂wα = ∂fα

∂zi
dzi ⊗ ∂wα . Let g be the metric

underlying ωε and ĝ be the metric underlying ω̂.

Lu (1967) showed that

∆gtrg(f ∗ĝ) = |∇∂f |2 + Rick ¯̀g
kq̄gp

¯̀f αp f βq ĝαβ̄︸ ︷︷ ︸
source curvature term

− R̂αβ̄γδ̄
(
gījf αi f βj

)(
gpq̄f γp f γq

)
︸ ︷︷ ︸

target curvature term

,

where ∆g := gīj∂i∂̄j. In particular, to apply the maximum principle, we
want a lower bound on the Ricci curvature of g and an upper bound on the
target curvature term of ĝ.
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where ∆g := gīj∂i∂̄j. In particular, to apply the maximum principle, we
want a lower bound on the Ricci curvature of g and an upper bound on the
target curvature term of ĝ.
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Two general improvements

Since Lu’s calculation in 67, there have been two general improvements:

• Yau (1978) applied his maximum principle to this calculation, which
permitted significantly more general source manifolds.

• Royden (1980) showed that the target curvature term is controlled
from an upper bound on the holomorphic sectional curvature if the
target metric is Kähler.1 This permits significantly more general
target manifolds.

In particular, if the holomorphic sectional curvature of ĝ is bounded above
HSCĝ ≤ −Λ0 ≤ 0, then

R̂αβ̄γδ̄
(
gījf αi f βj

)(
gpq̄f γp f γq

)
≤ −Λ0(n + 1)

2n trg(f ∗ĝ)2.

1Royden’s argument only requires the symmetries of the Kähler curvature tensor,
so it holds more generally for the (Chern) Kähler-like metrics that were introduced
by Yang–Zheng (2016).
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Royden’s Schwarz Lemma

Theorem. (Royden). Let X be a compact complex manifold with
dimC X = n. Let f : (X, g)→ (X, ĝ) be a holomorphic map. Suppose that g
is Kähler with

Ric(g) ≥ −C1g + C2ĝ,

for some constants C1,C2 ∈ R. Suppose that ĝ is Kähler with
HSCĝ ≤ −Λ0 ≤ 0. Then

∆gtrg(f ∗ĝ) ≥ |∇∂f |2 − C1trg(f ∗ĝ) +

(
C2 +

Λ0(n + 1)

2n

)
trg(f ∗ĝ)2,

and hence,

trg(f ∗ĝ) ≤ 2nC1

2nC2 + Λ0(n + 1)
.

In the Wu–Yau theorem, C1 = 1, C2 = ε+ ε0, and hence,

trg(f ∗ĝ) ≤ 2n
2n(ε+ ε0) + Λ0(n + 1)

,

which is uniformly bounded above as ε↘ 0.
21
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∆gtrg(f ∗ĝ) ≥ |∇∂f |2 − C1trg(f ∗ĝ) +
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(
C2 +

Λ0(n + 1)

2n

)
trg(f ∗ĝ)2,
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trg(f ∗ĝ) ≤ 2n
2n(ε+ ε0) + Λ0(n + 1)

,

which is uniformly bounded above as ε↘ 0.
21



Royden’s Schwarz Lemma

Theorem. (Royden). Let X be a compact complex manifold with
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The Wu–Yau Theorem

The Schwarz lemma thus yields an upper bound on trg(f ∗ĝ). A lower
bound is achieved using the complex Monge–Ampère equation relating the
metrics. Establishing the higher-order estimates is then standard.

Extracting a smooth limit as ε↘ 0 yields the desired contradiction,
showing that KX is nef. The same argument, assuming that KX is nef but
not ample, establishes the ampleness of the canonical bundle if the
holomorphic sectional curvature is strictly negative.

The Kähler assumption is used in a number of ways:

(†) To set-up the Monge–Ampère equation (from the Kähler cone).

(†) To equate the Chern Ricci curvatures of the source metrics g.

(†) The Monge–Ampère equation controls Ric(1)
ωε = gk ¯̀Rījk ¯̀, while

Ric(2)
ωε = gījRījk ¯̀ is what appears in the Schwarz lemma.

(†) To apply Royden’s Schwarz lemma with an upper bound on the
holomorphic sectional curvature of ĝ.
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ωε = gk ¯̀Rījk ¯̀, while

Ric(2)
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The Real Bisectional Curvature

In the Wu–Yau theorem, the negatively curved metric is only used to
control the target curvature term

R̂αβ̄γδ̄
(
gījf αi f βj

)(
gpq̄f γp f γq

)
in Royden’s Schwarz lemma For non-Kähler metrics, Royden’s argument
fails to control this term. Yang–Zheng (2018) introduced the real
bisectional curvature

RBCĝ(ξ) :=
1
|ξ|2

∑
α,β,γ,δ

R̂αβ̄γδ̄ξ
αβ̄ξγδ̄,

precisely to control this target curvature term. As a consequence,
Yang–Zheng proved the following extension of the Wu–Yau theorem.

Theorem. (Yang–Zheng). Let X be a compact Kähler manifold with a
Hermitian metric of RBCĝ < 0. Then X has ample canonical bundle.

Because the real bisectional curvature is defined to be the curvature
constraint that appears as the target curvature term in the Schwarz lemma,
it is far from clear if any improvements can be made.
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But it turns out that the real bisectional curvature is not sharp, and the
purpose of the present talk is to exhibit the first general improvement on
the Schwarz lemma in the Hermitian category since Royden.

Before stating the main workhorse, let us state the main application; the
following most general form of the Kobayashi–Lang conjecture:

Theorem. (B.–Stanfield, 2023). Let X be a compact Kähler manifold
with a pluriclosed metric ĝ of HSCĝ < 0. Then X has ample
canonical bundle.

Recall that a Hermitian metric ω is pluriclosed if ∂∂̄ω = 0. Such metrics
always exist on a compact complex surface (Gauduchon). The pluriclosed
condition is the only non-Kähler condition I’m aware of that is preserved by
the map ω0 7→ (ε+ ε0)ω0 − Ric(1)

ω0 +
√
−1∂∂̄uε
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with a pluriclosed metric ĝ of HSCĝ < 0. Then X has ample
canonical bundle.

Recall that a Hermitian metric ω is pluriclosed if ∂∂̄ω = 0. Such metrics
always exist on a compact complex surface (Gauduchon). The pluriclosed
condition is the only non-Kähler condition I’m aware of that is preserved by
the map ω0 7→ (ε+ ε0)ω0 − Ric(1)

ω0 +
√
−1∂∂̄uε

24



The general Schwarz lemma is the following:

Theorem. (B.–Stanfield, 2023). Let f : (X, g)→ (Y, ĝ) be a holomorphic
map between Hermitian manifolds. For τ > 0, we have

∆gtrg(f ∗ĝ) ≥
(
Ric(2)

k ¯̀ +
1
4

(1− 1/τ)Q2
k ¯̀

)
gkq̄gp

¯̀f αp f βq ĝαβ̄

−
(
R̂αβ̄γδ̄ −

1
4

(1− τ)T̂ραγ T̂σβδ ĝρσ̄
)
gījf αi f βj g

pq̄f γp f γq ,

where Q
(2)
k ¯̀ = Ti

prT
j
qsgk̄jgi ¯̀.

If the source metric g is Kähler, then we may take τ = 0. The new target
curvature term is then what we call the tempered real bisectional curvature

RBCτĝ(ξ) :=
1
|ξ|2

∑
α,β,γ,δ

(
R̂αβ̄γδ̄ −

1
4
T̂ραγ T̂σβδ ĝρσ̄

)
ξαβ̄ξγδ̄.
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−
(
R̂αβ̄γδ̄ −

1
4

(1− τ)T̂ραγ T̂σβδ ĝρσ̄
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The Tempered Curvatures

The tempered real bisectional curvature

RBCτĝ(ξ) :=
1
|ξ|2

∑
α,β,γ,δ

(
R̂αβ̄γδ̄ −

1
4
T̂ραγ T̂σβδ ĝρσ̄

)
ξαβ̄ξγδ̄

is intrinsic to the Hermitian structure in the sense that it is the
second-order term for the Hessian of the metric in geodesic normal
coordinates for the Chern connection.

Remarkably, if ĝ is a pluriclosed metric, then

HSCĝ < 0 =⇒ RBCτĝ < 0.
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HSCĝ < 0 =⇒ RBCτĝ < 0.
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Tempered Schwarz Lemma

Hence, we have the following Schwarz lemma:

Theorem. (B.–Stanfield). Let f : (X, g)→ (Y, ĝ) be a holomorphic map from
a compact Kähler manifold to a pluriclosed manifold. Suppose that

Ricg ≥ −C1g + C2f ∗ĝ,

for some constants C1,C2 ∈ R. If HSCĝ ≤ −Λ0 ≤ 0, then

∆gtrg(f ∗ĝ) ≥ −C1trg(f ∗ĝ) +

(
C2 +

Λ0(n + 1)

2n

)
trg(f ∗ĝ)2,

and hence,

trg(f ∗ĝ) ≤ 2nC1

2nC2 + Λ0(n + 1)
.

Hence, by applying the novel Schwarz lemma with the source metric being
a Kähler metric and the target metric being pluriclosed with HSCĝ < 0, we
have the desired second-order estimate for the Wu–Yau argument.
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One of the most significant achievements in understanding (a priori)
non-Kähler Kobayashi hyperbolic manifolds was achieved by Lee–Streets
(2021). Using the pluriclosed flow, they were able to establish the following
remarkable result.

Theorem. (Lee–Streets). Let X be a compact pluriclosed manifold with a
Hermitian metric ĝ of RBCĝ < 0. Then X has ample canonical bundle.

There is a parabolic extension of the tempered Schwarz lemma:

Theorem. (B.–Stanfield). Let X be a complex manifold with a smooth
family of Hermitian metrics gt satisfying

∂gt
∂t ≥ −Ric

(2)
gt −

1
4

(1− 1/τ)Q(2)
gt − gt,

for some τ > 0 sufficiently small. Let ĝ be a pluriclosed metric with
HSCĝ ≤ −Λ0 < 0. Then

(∂t −∆gt) trgt(ĝ) ≤ −Λ0

n trgt(ĝ)2 + trgt(ĝ).

This yields a parabolic Schwarz lemma for the second Chern Ricci flow,
but not for the pluriclosed flow.
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Compatibility with the pluriclosed flow

Let gt be a family of Hermitian metrics evolving under the pluriclosed flow

∂gt
∂t = −Ric(2)

gt + Q
(1)
gt ,

where Q
(1)
k ¯̀ = Tr

kpTs
`qgr̄sg

pq̄. The parabolic tempered Schwarz lemma applied
to the pluriclosed flow yields

(∂t −∆gt) trgt(ĝ) ≤ −Q(1) − 1
4

(1− 1/τ)Q2︸ ︷︷ ︸
bad term

+trgt(ĝ) + RBCτĝ .

Note that we require τ > 0 to be small to ensure that
HSCĝ < 0 =⇒ RBCĝ < 0 if ĝ is pluriclosed. If this technicality can be
handled, it would follow that a compact complex manifold with a
pluriclosed metric of negative holomorphic sectional curvature has ample
canonical bundle.
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