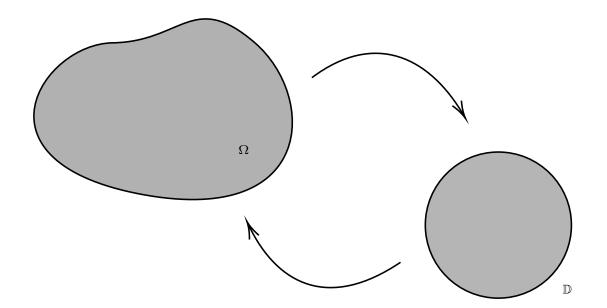
Curvature and Moduli – Some Intimations and Propaganda

Kyle Broder

University of Queensland

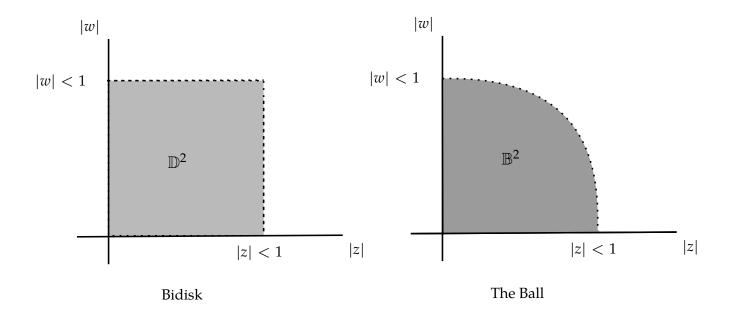
Riemann Mapping Theorem

Theorem. A simply connected domain $\Omega \subsetneq \mathbb{C}$ is biholomorphic to the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$



The Birth of Several Complex Variables

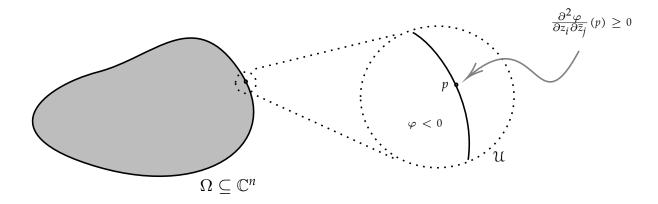
Theorem. (Poincaré). The ball $\mathbb{B}^2 := \{|z|^2 + |w|^2 < 1\}$ is not biholomorphic to the bidisk $\mathbb{D}^2 := \{|z| < 1, |w| < 1\}$.



Declare a bounded domain $\Omega \subseteq \mathbb{C}^n$ is **pseudoconvex** if for all $p \in \partial \Omega$, there is a smooth function φ defined in a neighborhood $\mathcal{U} \subset \mathbb{C}^n$ of p such that the complex Hessian¹

$$\sqrt{-1}\partial\bar{\partial}\varphi = \left(rac{\partial^2\varphi}{\partial z_i\partial\bar{z}_j}
ight)$$

is positive semi-definite.



If $\sqrt{-1}\partial\bar{\partial}\varphi$ is positive definite, we say that Ω is **strongly pseudoconvex**.

¹The complex Hessian is the smallest refinement on the familiar Hessian such that it remains invariant under a holomorphic change of coordinates.

Pseudoconvexity and Strong Pseudoconvexity is preserved under **biholomorphism** (if the boundaries are C^{∞} -smooth).

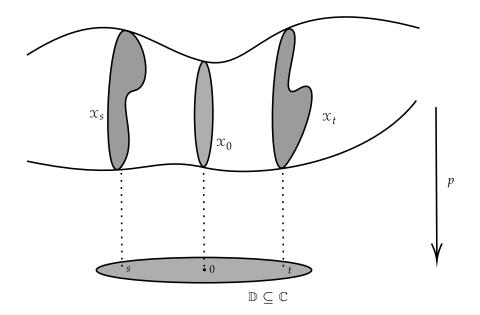
The bidisk \mathbb{D}^2 is **pseudoconvex** while the ball \mathbb{B}^2 is **strongly pseudoconvex**. |w| < 1|w| < 1 \mathbb{B}^2 \mathbb{D}^2 |z| < 1|z| < 1

Pseudoconvex

Strongly Pseudoconvex

This discrepancy has an important consequence in terms of the behavior of disk fibrations:

A surjective holomorphic submersion $p : \mathcal{X} \to \mathbb{D}$ is said to be a **disk fibration** if every fiber $\mathcal{X}_t := p^{-1}(t)$, for $t \in \mathbb{D}$, is biholomorphic to a disk.



The projection onto one of the factors defines a disk fibration structure on both \mathbb{D}^2 and \mathbb{B}^2 .

For the bidisk \mathbb{D}^2 , the disk fibration $p : \mathbb{D}^2 \to \mathbb{D}$ is holomorphically trivial.

We say that a disk fibration $p : \mathcal{X} \to S$ is locally (holomorphically) trivial if for each point $s \in S$, there is an open neighborhood $\mathcal{U} \ni s$ such that

 $p^{-1}(\mathfrak{U})\simeq\mathfrak{U}\times\mathbb{D}.$

Of course, if $\mathfrak{X} = \mathbb{D}^2$, for any point $s \in \mathbb{D}$, we can take $\mathfrak{U} = \mathbb{D}$.

On the other hand, the disk fibration $p : \mathbb{B}^2 \to \mathbb{D}$ cannot be holomorphically trivial:

An old theorem of Royden tells us that a disk fibration is locally holomorphically trivial if and only if it is holomorphically trivial.

Hence, if $p : \mathbb{B}^2 \to \mathbb{D}$ is locally trivial, then \mathbb{B}^2 would be biholomorphic to \mathbb{D}^2 .

The bidisk \mathbb{D}^2 and the ball \mathbb{B}^2 , therefore, occupy two opposing ends from the perspective of moduli and deformation theory.

Understanding the behavior of complex manifolds in families can be difficult, and we would like to have a robust mechanism for measuring the existence or non-existence of holomorphic variation in the fibers.

Question. Can the behavior of the disk fibrations $p : \mathcal{X} \to \mathbb{D}$ be detected by looking at the curvature of metrics which reside on \mathcal{X} ?

Riemannian manifolds of negative curvature.

Key Lemma: Let (M, g) be a complete Riemannian manifold with non-positive sectional curvature.

(*) For any $p, q \in M$, there is a unique geodesic connecting p and q that minimizes the length in its homotopy class.

Corollary. Let (M, g) be a complete Riemannian manifold supporting (\star) . Then the universal cover is diffeomorphic to \mathbb{R}^n .

Proof. The universal cover \widetilde{M} is simply connected, so there is only one homotopy class. Hence, for any $p, q \in \widetilde{M}$, there is a unique geodesic connecting p and q. This implies that the exponential map $\exp_p : T_p \widetilde{M} \to \widetilde{M}$ is bijective. If the exponential map has maximal rank for all $p \in M$, it is a diffeomorphism.

Riemannian manifolds of negative curvature.

Corollary. Let (M, g) be a compact Riemannian manifold with $\text{Sec}_g < 0$. Then every abelian subgroup of $\pi_1(M)$ is infinite cyclic.

Proof. Let $\alpha, \beta \in \pi_1(M, p)$ be two commuting closed loops based at $p \in M$. The homotopy between $\alpha\beta$ and $\beta\alpha$ gives a continuous map $f : \mathbb{T}^2 \to M$, where $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$.

Since $\text{Sec}_g < 0$, the Eells–Sampson theorem gives a homotopy between f and a harmonic map $f^H : \mathbb{T} \to M$.

Integrating the Laplacian of the energy density $\Delta e(f^{\mathrm{H}})$ shows that $f^{\mathrm{H}}(\mathbb{T}^2)$ is contained in a closed geodesic γ with basepoint $q = f^{\mathrm{H}}(0,0)$.

The two loops in $\pi_1(M, q)$ given by α and β through the homotopy from f to f^H are both multiples of γ , and are thus contained in a cyclic subgroup of $\pi_1(M, q)$.

The cyclic group has to be infinite, otherwise γ^k for $k \in \mathbb{N}$ would be homotopic to a constant loop, violating the unique geodesic property (*).

Hence, the subgroup of $\pi_1(M, p)$ generated by α and β is isomorphic to an infinite cyclic group. Since this is true for any commuting elements of $\pi_1(M, p)$, the conclusion follows.

Corollary. Compact Riemannian manifolds (M, g) with $Sec_g < 0$ cannot be homeomorphic to products.

Proof. Suppose $M \simeq X \times Y$. Cartan–Hadamard implies that M is aspherical (only $\pi_1(M)$ is possibly non-trivial). Hence, X and Y are aspherical. Since M is compact, X and Y are compact, and therefore, X and Y cannot be simply connected (otherwise they would be contractible, which is not possible).

Hence, both $\pi_1(X)$ and $\pi_1(Y)$ are non-trivial. Let γ_X, γ_Y be curves representing non-trivial homotopy classes. These generate infinite cyclic groups isomorphic to \mathbb{Z} , and since they commute, $\{\gamma_X, \gamma_Y\} \simeq \mathbb{Z} \oplus \mathbb{Z}$. This violates Priessman's theorem.

Riemannian manifolds with negative sectional curvature:

Theorem. (Preissman). Let (M, g) be a compact Riemannian manifold with Sec_g < 0. Then any abelian subgroup of the fundamental group $\pi_1(M)$ is cyclic.

In particular, compact product manifolds cannot admit metrics with $\text{Sec}_g < 0$, since the fundamental group would then contain $\mathbb{Z} \oplus \mathbb{Z}$ as a subgroup.

Let $\alpha, \beta \in \pi_1(M)$ be two commuting elements. The homotopy between $\alpha\beta$ and $\beta\alpha$ defines a continuous map $f : \mathbb{S}^1 \times \mathbb{S}^1 \to M$.

The Eells–Sampson theorem gives a homotopy between f and a harmonic map $f^{H} : \mathbb{S}^{1} \times \mathbb{S}^{1} \to M$.

By integrating $\Delta e(f^{\rm H})$, where *e* is the energy density of $f^{\rm H}$, if $\operatorname{Sec}_g < 0$, either $f^{\rm H}$ is constant or $f^{\rm H}$ maps $\mathbb{S}^1 \times \mathbb{S}^1$ onto a closed geodesic.

Riemannian manifolds with negative sectional curvature:

Theorem. (Cartan–Hadamard). A complete Riemannian manifold (M, g) with $\text{Sec}_g \leq 0$ has universal cover diffeomorphic to \mathbb{R}^n .

In particular, the homotopy-type of $M \in (\text{Sec} \leq 0)$ is localized in the fundamental group $\pi_1(M)$.

Reminder: A Riemannian manifold (M, g) is said to be complete if the distance function dist_g : $M \times M \rightarrow \mathbb{R}$ (given by infimum of lengths of curves) is Cauchy complete.

Without compactness, negative sectional curvature is not obstructed on products:

Theorem. (Anderson). Let $f : \mathcal{E} \to \mathcal{B}$ be a smooth vector bundle over a compact Riemannian manifold $(\mathcal{B}, g_{\mathcal{B}})$ with $\operatorname{Sec}_{g_{\mathcal{B}}} < 0$. Then \mathcal{E} admits a complete Riemannian metric $g_{\mathcal{E}}$ with

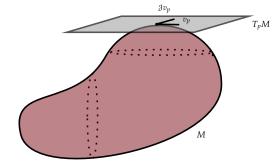
 $-a \leq \operatorname{Sec}_{g_{\mathcal{E}}} \leq -1.$

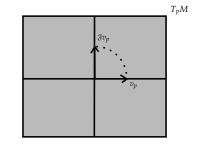
The constant $a \ge 1$ depends only on the geometry of \mathcal{B} and the topology of $f : \mathcal{E} \to \mathcal{B}$.

Complex Structures

An **almost complex structure** \mathcal{J} on a smooth manifold M is an endomorphism

 $\mathcal{J}: TX \to TX, \qquad \qquad \mathcal{J}^2 = -\mathrm{id}.$

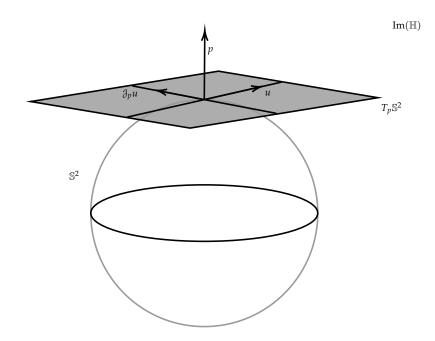




An Almost Complex Structure on \mathbb{S}^2 .

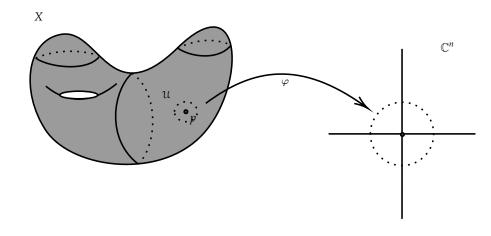
Identify $\mathbb{S}^2 \subset \mathbb{R}^3$ with the space of unit imaginary quaternions $\operatorname{Im}(\mathbb{H}^3) \simeq \mathbb{R}^3$.

For each point $p \in S^2$, we get a map $\mathcal{J}_p : T_p S^2 \to T_p S^2$ satisfying $\mathcal{J}_p^2 = -\mathrm{id}_{T_p S^2}$, given by $\mathcal{J}_p(v) := p \times v$.



In general, an **almost complex structure** $\mathcal{J} \in \text{End}(TX)$ is **not sufficient** to yield **local holomorphic coordinates**.

There is an obvious **obstruction**: Suppose *X* is a complex manifold with holomorphic coordinates $(z_1, ..., z_n)$ centered at a point $p \in X$.



The tangent space to *X* at the point *p* is the complex vector space:

$$T_p X = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z_1}, ..., \frac{\partial}{\partial z_n} \right\}.$$

Let *M* be a smooth manifold with almost complex structure *J*.

The condition $\mathcal{J}^2 = -\mathrm{id}$ gives an eigenspace splitting $T_p^{\mathbb{C}}M \simeq T_p^{1,0}M \oplus T_p^{0,1}M,$

corresponding to the eigenvalues $\sqrt{-1}$ and $-\sqrt{-1}$, respectively.

If $(x_1, ..., x_{2n})$ are smooth coordinates on *M*, then $T_p^{1,0}M$ is spanned by

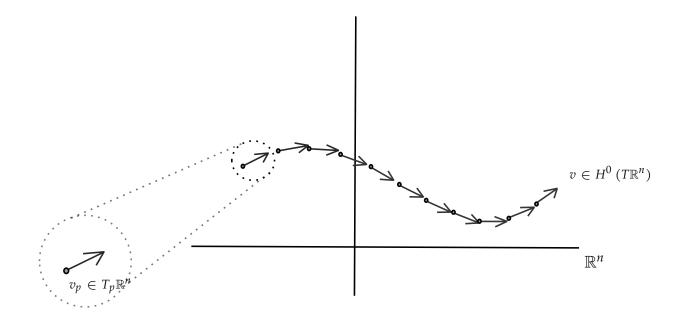
$$\frac{\partial}{\partial z_i} := \frac{\partial}{\partial x_i} - \sqrt{-1} \mathcal{J} \frac{\partial}{\partial x_i}$$

and $T_p^{0,1}M$ is spanned by

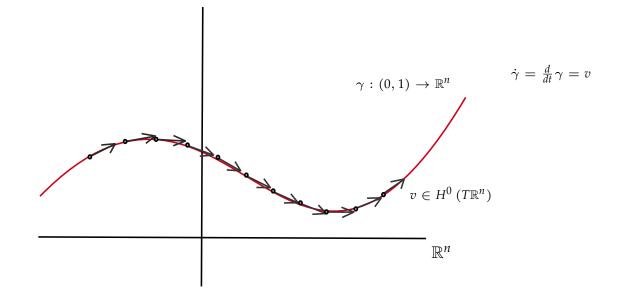
$$\frac{\partial}{\partial \overline{z}_i} := \frac{\partial}{\partial x_i} + \sqrt{-1} \mathcal{J} \frac{\partial}{\partial x_i}.$$

Hence, if an almost complex structure \mathcal{J} gives rise to a system of local holomorphic coordinates, we need to be able to find a complex manifold *X* such that the tangent bundle of *X* is prescrisely $T^{1,0}M$.

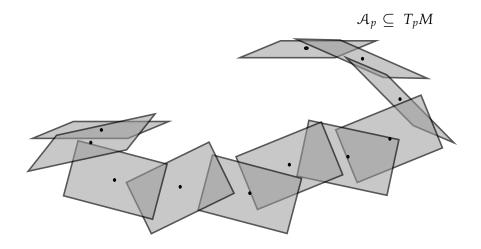
We have seen this before in the context of vector fields and integral curves:



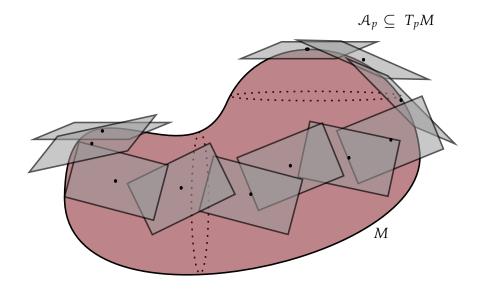
We have seen this before in the context of vector fields and integral curves:



The integrability condition on the complex structure is merely a higher-dimensional version of this:



The integrability condition on the complex structure is merely a higher-dimensional version of this:



The Frobenius theorem tells us that $T^{1,0}M$ is an integrable subbundle if and only if it is closed under Lie bracket:

$$[u,v] \subseteq T^{1,0}M, \qquad \forall u,v \in T^{1,0}M.$$

This manifests as the vanishing of the Nijenhuis tensor:

$$\mathcal{N}^{\partial}(u_0, v_0) := [u_0, v_0] + J([Ju_0, v_0] + [u_0, Jv_0]) - [Ju_0, Jv_0].$$

Theorem. (Newlander–Nirenberg). An almost complex structure \mathcal{J} is integrable if and only if $\mathcal{N}^{\mathcal{J}} \equiv 0$.

We can repeat the almost complex structure construction on S^2 with S^6 – identify S^6 with the space of unit imaginary octonions $Im(\mathbb{O})$. This endows S^6 with an almost complex structure.

If one computes the Nijenhuis tensor of this almost complex structure, however, it does not vanish precisely because the octonions are not associative.

A Riemannian metric g on a complex manifold (X, \mathcal{J}) is said to be **Hermitian** if $g(\mathcal{J}u, \mathcal{J}v) = g(u, v), \qquad u, v \in TX.$

Every complex manifold supports a Hermitian metric: Take any Riemannian metric *g* and set

 $h(u,v) := g(u,v) + g(\mathcal{J}u,\mathcal{J}v).$

We say that a Hermitian metric *g* is **Kähler** if the 2–form

 $\omega_g(u,v) := g(\mathcal{J}u,v)$

is **closed**.

Some examples of Kähler manifolds

Complex projective space ℙⁿ endowed with the Fubini–Study metric.
 → Projective manifolds.

- † Euclidean space \mathbb{C}^n endowed with the Euclidean metric.
 - → Stein manifolds (in particular, pseudoconvex domains).
- † A compact complex surface is K\"ahler if and only if the first Betti number is even.
 → Hopf surface S¹ × S³ is not K\"ahler.
- † The Weil–Petersson metric on the Riemann moduli space \mathcal{M}_g .

The sectional curvature is a Riemannian invariant, not a complex-analytic invariant. If (M,g) is a Riemannian manifold with complex structure $J : TM \to TM$, the complexified tangent bundle $T^{\mathbb{C}}M := TM \otimes \mathbb{C}$ splits into a sum of eigenbundles

$$T^{\mathbb{C}}M \simeq T^{1,0}M \oplus T^{0,1}M,$$

where $T^{1,0}M := \{v_0 - \sqrt{-1}Jv_0 : v_0 \in T^{\mathbb{C}}M\}$ and $T^{0,1}M := \{v_0 + \sqrt{-1}Jv_0 : v_0 \in T^{\mathbb{C}}M\}$. Compexifying the Riemannian curvature tensor *R* gives a quadrilinear map *R* on $T^{\mathbb{C}}M \oplus \overline{T^{\mathbb{C}}M}$. Since *R* is skew-symmetric in the first two and last two entries, the only non-trivial components of *R* are

$$R(u,\overline{v},w,\overline{z}),$$

where $u, v, w, z \in T^{\mathbb{C}}M$.

Hence, the natural Hermitian replacement for the sectional curvature is given by

 $R(u, \overline{u}, v, \overline{v}).$

Set $u = \frac{1}{\sqrt{2}} (u_0 - \sqrt{-1}Ju_0)$ and $v = \frac{1}{\sqrt{2}} (v_0 - \sqrt{-1}Jv_0)$. Then the Bianchi identity gives $\begin{aligned} R(u, \overline{u}, v, \overline{v}) &= -R(u_0, Ju_0, v_0, Jv_0) \\ &= R(v_0, u_0, Ju_0, Jv_0) + R(Ju_0, v_0, u_0, Jv_0) \\ &= R(v_0, u_0, u_0, v_0) + R(Ju_0, v_0, v_0, Ju_0). \end{aligned}$

In particular, $R(u, \overline{u}, v, \overline{v})$ is a sum of two sectional curvatures, and we therefore call it the *holomorphic bisectional curvature*.

The bisectional curvature is obviously weaker than the sectional curvature, but it is still a very restrictive curvature constraint:

- (i) Compact Kähler manifolds with HBC > 0 are biholomorphic to \mathbb{P}^{n} .
- (ii) Mohsen has constructed compact simply connected complete intersections in \mathbb{P}^n with HBC < 0. Such manifolds cannot admit metrics with Sec < 0 by Cartan–Hadamard.

The most famous result concerning the holomorphic bisectional curvature is the **Mori** and **Siu–Yau** solution of the **Frankel conjecture**:

Theorem. (Mori, Siu–Yau). Let (X, ω) be a compact Kähler manifold with $HBC_{\omega} > 0$. Then X is biholomorphic to \mathbb{P}^{n} .

In contrast to the sectional curvature, there are compact simply connected Kähler manifolds with $HBC_{\omega} < 0$. There were recently constructed by Mohsen.

Reminder: Structure theorems for Riemannian manifolds with Sec < 0.

Cartan-Hadamard:

$$M \in (\text{Sec} \le 0) \implies \widetilde{M} \simeq_{\text{diffeo}} \mathbb{R}^n.$$

Preissman:

$$M \in (\text{Sec} < 0) \cap (\text{Cmpct}) \implies M \not\simeq M_1 \times M_2.$$

Anderson:

$$\mathcal{B} \in (\text{Sec} < 0) \cap (\text{Cmpct}) \implies \text{Vect}_{\mathcal{C}^{\infty}}(\mathcal{B}) \subseteq (-a \leq \text{Sec} \leq -1).$$

The Complex-Analytic Category:

Replace:

- smooth vector bundles by holomorphic vector bundles $f : \mathcal{E} \to \mathcal{B}$
- sectional curvature by the holomorphic bisectional curvature.

Question. Let $f : \mathcal{E} \to \mathcal{B}$ be a holomorphic vector bundle, where \mathcal{B} is compact and admits a Hermitian metric ω with ${}^{c}\text{HBC}_{\omega} < 0$. Does \mathcal{E} admit a complete Hermitian metric with $-a \leq {}^{c}\text{HBC} \leq -1$, for some constant a > 1?

The answer turns out to be **false**, by a result of F. Zheng:

Theorem. (Zheng). Let $\mathcal{X} := X \times Y$ be a product complex manifold with X compact. Then \mathcal{X} does not admit a Hermitian metric ω with

 c HBC $_{\omega} \leq -1.$

In fact, Zheng's theorem asserts that \mathcal{X} does not even admit a (possibly non-complete) Hermitian metric with ^cHBC $_{\omega} \leq -1$.

Theorem. (Yang). Let $\mathcal{F} \hookrightarrow \mathcal{X} \to \mathcal{B}$ be a holomorphic fiber bundle with \mathcal{F} compact. Then \mathcal{X} does not admit a complete Kähler metric with HBC_{ω} $\leq -\kappa_0 < 0$.

The following theorem of Fischer and Grauert shows that holomorphic fiber bundles with compact fiber are trivial in the following sense:

Theorem. (Fischer–Grauert). Let $p : X \to S$ be a holomorphic family of compact complex manifolds. The fibers of *p* are all biholomorphic if and only if *p* is a holomorphic fiber bundle.

Theorem. (Yang). Let $\mathcal{F} \hookrightarrow \mathcal{X} \to \mathcal{B}$ be a holomorphic fiber bundle with \mathcal{F} compact. Then \mathcal{X} does not admit a complete Kähler metric with HBC_{ω} $\leq -\kappa_0 < 0$.

Corollary. Let $p : \mathfrak{X} \to \mathfrak{B}$ be a holomorphic family of compact complex manifolds. If \mathfrak{X} admits a complete Kähler metric with HBC $_{\omega} \leq -\kappa_0 < 0$, there must be **non-trivial** holomorphic **variation** in the fibers.

The bisectional curvature must be **bounded away from zero**:

Theorem. (Klembeck). There is a complete **Kähler** metric on \mathbb{C}^n with $HBC_{\omega} > 0$.

Seshadri gave a small modification of Klembeck's construction, showing:

Theorem. (Seshadri = Klembeck+ ε). There is a complete Kähler metric on \mathbb{C}^n with

 $\text{HBC}_{\omega} < 0.$

The narrative thus far:

- The bidisk $\mathbb{D}^2 := \mathbb{D} \times \mathbb{D} \subseteq \mathbb{C}^2$ is a holomorphically trivial disk fibration.
- The ball \mathbb{B}^2 is a disk fibration which cannot be locally trivial.
- In the Riemannian category, Preissman's theorem ensures that compact manifolds with negative sectional curvature cannot be trivial bundles.
- Zheng: Product manifolds with one of the factors being compact do not admit Hermitian metrics with HBC ≤ -1 .
- Yang: Holomorphic fiber bundles (holomorphic families with all fibers biholomorphic) with compact fiber do not admit metrics with HBC ≤ -1 .
- Klembeck, Seshadri The curvature must be bounded away from zero.

Curvature of the product metric on the bidisk \mathbb{D}^2 :

- (†) Sec(\mathbb{D}^2) ≤ 0 .
- (†) $\operatorname{HBC}(\mathbb{D}^2) \leq 0.$

Curvature of the Poincaré metric on the ball \mathbb{B}^2 :

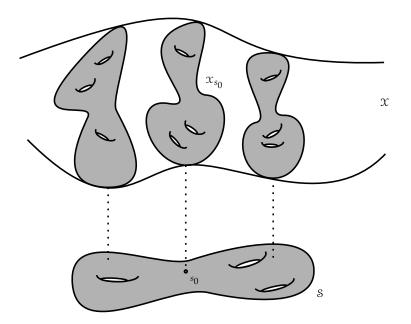
(†) $-4 \leq \operatorname{Sec}(\mathbb{B}^2) \leq -1.$ (†) $-2 \leq \operatorname{HBC}(\mathbb{B}^2) \leq -1.$

Recall that $p : \mathbb{D}^2 \to \mathbb{D}$ is a trivial disk fibration, while $p : \mathbb{B}^2 \to \mathbb{D}$ is a necessarily non-trivial disk fibration.

Conjecture. Let $f : \mathfrak{X} \to \mathfrak{S}$ be a holomorphic family of complex manifolds. Suppose \mathfrak{X} admits a **complete** Hermitian metric with HBC $\leq -\kappa_0 < 0$. Then *f* is **not** (holomorphically) **locally trivial**.

Kodaira Fibration Surfaces

Let $p : \mathcal{X} \to \mathcal{S}$ be a surjective holomorphic submersion onto a compact Riemann surface of genus $b \ge 2$ with fibers being compact Riemann surfaces of genus $g \ge 2$. If there fibers are **not all biholomorphic**, then we say that $p : \mathcal{X} \to \mathcal{S}$ is a **Kodaira Fibration Surface**.



Theorem. (To–Yeung) Let $p : \mathfrak{X} \to S$ be a Kodaira fibration surface. Then \mathfrak{X} admits a Kähler metric with $\operatorname{HBC}_{\omega} < 0$.

The structure of the argument is just as important as the result:

- − The fibers of a KFS are Riemann surfaces of genus $g \ge 2$. So we get a moduli map $\mu : S \to M_g$ into the moduli space of genus $g \ge 2$ Riemann surfaces.
- Define a map $\tau : \mathfrak{X} \to \mathfrak{M}_{g,1}$ by sending $x \in \mathfrak{X}$ to the biholomorphism class of the marked Riemann surface $\mathfrak{X}_{p(x)} \{x\}$, where $\mathfrak{X}_{p(x)} := p^{-1}(p(x))$ is the fiber over p(x).
- The Weil–Petersson metric ω_{WP} on $\mathcal{M}_{g,1}$ has strictly negative bisectional curvature. Thus, we obtain a metric on \mathcal{X} by pulling back the Weil–Petersson metric from $\mathcal{M}_{g,1}$ to \mathcal{X} .

Question. (Mok). Does the bidisk $\mathbb{D}^2 := \mathbb{D} \times \mathbb{D}$ admit a complete Kähler metric with HBC $_{\omega} \leq -\kappa_0 < 0$?

Thanks for listening!