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The content of the present talk is based off some results that have appeared
in

† The Schwarz Lemma in Kähler and Non-Kähler Geometry (to appear
in the Asian J. Math).

† The Schwarz Lemma: An Odyssey (published in the Rocky Mountain
J. Math).

† The Gauduchon Curvature of Hermitian Manifolds (joint with James
Stanfield, published in Int. J. Math).

† A General Schwarz Lemma for Hermitian Manifolds (joint with James
Stanfield, in preparation).
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Origins – Convexity

A compact set K ⊂ Rn is convex if any two points are contained in
the image of an affine line A : [0, 1]→ K.

K ⊂ Rn

A[0, 1]
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A Convexity Notion in Complex Geometry

Definition. A complex manifold is said to be rationally connected if
any two points are contained in the image of a rational curve P1 → X.

Examples. Pn, Hirzebruch surfaces P(OP1 ⊕ OP1(n)); the twistor space
P(S3 × S1) of the Hopf surface is fibered by Hopf surfaces S1 × S3

over P1;
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Hyperbolic Complex Manifolds

Definition. A complex manifold X is said to be hyperbolic if every
holomorphic map C→ X is constant.

Examples. The ball Bn; the polydisk Dn; any complex manifold with
universal cover a bounded domain in Cn; a smooth hypersurface in
Pn of suitably large degree (e.g., degree d ≥ 18 in P3); compact
manifolds with Ω1

X ample.
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Kobayashi Conjecture

One of the main questions has been the following folklore generalization of
a conjecture made by Kobayashi half a century ago:

Conjecture. A compact hyperbolic manifold is projective and
canonically polarized (i.e., the canonical bundle is ample).

Evidence. Curves; Kähler surfaces (Wong ‘81, Campana ‘91);
non-Kähler surfaces (assuming GSS conjecture); Compact manifolds
whose universal cover is a bounded domain Ω ⊂ Cn; Smooth
hypersurfaces in Pn of suitably large degree; manifolds of general
type (KX big).

The most significant progress over the past decade has come from
differential geometry.
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The Holomorphic Sectional Curvature

Hyperbolic manifolds X are characterized by the non-existence of entire
curves (i.e., every holomorphic map C→ X is constant).

Definition. Let (X, ω) be a Hermitian manifold. The Holomorphic
Sectional Curvature is defined by

HSCω(ξ) :=
1
|ξ|4ω

R(ξ, ξ, ξ, ξ),

where ξ ∈ TX.

The following is essentially due to Grauert–Reckziegel (‘65):

Theorem. A Hermitian manifold (X, ω) with HSCω ≤ −κ0 < 0 is
hyperbolic.
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Curvature and Hyperbolicity

The condition HSCω < 0 does not characterize compact hyperbolic
manifolds. Examples of projective hyperbolic surfaces with no
Hermitian metric of HSCω < 0 were constructed by Demailly (‘97).

It is unknown, however, how many Kobayashi hyperbolic manifolds have
metrics with HSCω < 0, even for surfaces.

We know that the Kähler–Einstein metric ωKE on a compact Kähler
surface has HSCωKE < 0 only if c2 ≤ 3c21. In particular, Barlow,
Burniat, Campadelli, Catanese, Godeaux, Horikawa, Keum–Naie,
Oliverio, Todorov surfaces do not have KE metrics with HSCωKE < 0.
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Positive Holomorphic Sectional Curvature

We have seen that

HSCω ≤ −κ0 < 0 =⇒ Hyperbolic.

X. Yang (2018) showed that a compact Kähler manifold (X, ω) with
HSCω > 0 is projective and rationally connected.

This is not true for compact non-Kähler surfaces (e.g., S1 × S3).
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The Wu–Yau Theorem

Theorem. Let (X, ω) be a compact Kähler manifold with a Kähler
metric of HSCω < 0. Then X is projective and canonically polarized
(KX is ample).

In particular,

HSCω < 0 =⇒ ∃ωKE such that Ric(ωKE) = −ωKE.
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The Kähler–Einstein metric in the Wu–Yau theorem is constructed
either from a complex Monge–Ampère equation or as the long-time
solution of the Kähler–Ricci flow.

The crux of the argument is to obtain a uniform second-order
estimate

C−1ωh ≤ ωt ≤ Cωh.

Since trωt(f ∗ωh) = |∂f |2, where f : (X, ωt)→ (X, ωh) is the identity map, the
uniform estimate C−1ωh ≤ ωt follows from an estimate on |∂f |2 (the other
estimate ωt ≤ Cωh is gotten from the equation).
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The Schwarz Lemma

For a general holomorphic map f : (X, ωX)→ (Y, ωY), we have1

∆ωX |∂f |
2 = |∇∂f |2 + RicωX (∂f , ∂f )− RωY (∂f , ∂f , ∂f , ∂f )

1As stated, the formula is not literally correct. The correct formula in a local
frame is

∆ωg |∂f |2 = |∇∂f |2 + gijRg
ijk`︸ ︷︷ ︸

Ricci

gkqgp`hαβ f
α
p f βq − Rh

αβγδ
gijfαi f βj gpqf γp f δq .
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To obtain an estimate on |∂f |2 from

∆ωX |∂f |
2 = |∇∂f |2 + RicωX (∂f , ∂f )− RωY (∂f , ∂f , ∂f , ∂f ),

If RicωX ≥ −C1ωX + C2f ∗ωY and RωY (∂f , ∂f , ∂f , ∂f ) ≤ −κ0|∂f |4, then

∆ωX |∂f |
2 ≥ |∇∂f |2 − C1|∂f |2 +

1
r (C2 + κ0) |∂f |4.
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If RicωX ≥ −C1ωX + C2f ∗ωY and RωY (∂f , ∂f , ∂f , ∂f ) ≤ −κ0
r |∂f |

4, then

∆ωX |∂f |
2 ≥ |∇∂f |2 − C1|∂f |2 +

1
r (C2 + κ0) |∂f |4.

If X is compact, then |∂f |2 attains a maximum somewhere, and at
this point,

0 ≥ ∆ωX |∂f |
2 ≥ −C1|∂f |2 +

1
r (C2 + κ0)|∂f |4.

Hence,

|∂f |2 ≤ C1r
C2 + κ0

.
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Problems in the Schwarz Lemma

We saw from

∆ωX |∂f |
2 = |∇∂f |2 + RicωX (∂f , ∂f )− RωY (∂f , ∂f , ∂f , ∂f ),

that we require a lower bound on RicωX and an upper bound on
RωY (∂f , ∂f , ∂f , ∂f ).

For holomorphic maps of rank r > 1, the target curvature term
RωY (∂f , ∂f , ∂f , ∂f ) is not the holomorphic sectional curvature.
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Royden’s Polarization Argument

Royden showed that the target curvature term RωY (∂f , ∂f , ∂f , ∂f ) can
be controlled by the Holomorphic Sectional Curvature if the metric is
Kähler:

Theorem. (Royden ‘80). Let f : (X, ωg) −→ (Y, ωh) be a holomorphic
map between Kähler manifolds. Suppose Ricωg ≥ −C1ωg + C2f ∗ωh

and HSCωh ≤ −κ0. Then

∆ωg |∂f |
2 ≥ −C1|∂f |2 +

1
r (κ0 + C2)|∂f |4,

where r = rank(∂f ). In particular, if X is compact, then

trωg (f
∗ωh) = |∂f |2 ≤ C1r

(κ0 + C2)
.
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Royden’s Schwarz lemma is the backbone of the Wu–Yau theorem (2015):

Theorem. Let (X, ω) be a compact Kähler manifold with a Kähler
metric with HSCω < 0. Then X is projective and canonically
polarized (KX is ample).
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Non-Kähler Hermitian Metrics

It is natural to consider non-Kähler Hermitian metrics, even on Kähler
manifolds.

Examples. The Killing metric on the projective flag manifold
F1,2,3(C3) := SU(3)/S(U(1)3) is Hermitian, but not Kähler (K. Yang,
‘94); the Page metric (‘79) on P2]P2 and Chen–LeBrun–Weber metric
(2008) on P2]2P2 are Hermitian, Einstein, conformal to Kähler
metrics, but are not Kähler.
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The Schwarz Lemma for Non-Kähler Metrics

For a long time it was falsely believed that the target curvature term was
controlled from an upper bound on the HSC, even for Hermitian
non-Kähler metrics.

This was properly corrected by X. Yang and F. Zheng (2017), where they
introduced:

Definition. Let (X, ω) be a Hermitian manifold. The Real Bisectional
Curvature is defined

RBCω(ξ) :=
1
|ξ|2ω

∑
Rαβγδξ

αβξγδ,

for ξ a Hermitian (1, 1)–tensor

For Kähler metrics, the RBC is comparable to the HSC (they always have
the same sign). The RBC is stronger, in general, but does not control the
Ricci curvatures.
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The Yang–Zheng Schwarz Lemma for Hermitian Metrics

Theorem. (Yang–Zheng, 2017). Let f : (X, ωg)→ (Y, ωh) be a
holomorphic map of rank r between Hermitian manifolds. Suppose
Ric(2)ωg ≥ −C1ωg + C2f ∗ωh and RBCωh ≤ −κ0 ≤ 0. Then if X is
compact,

|∂f |2 ≤ C1r
C2 + κ0

.

Corollary. Let X be a compact Kähler manifold with a Hermitian
metric with RBCωh ≤ −κ0 < 0. Then X is projective and canonically
polarized.
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More General Hermitian Connections

All the results concerning the Schwarz lemma have been for the
Chern connection c∇ – the unique Hermitian connection compatible
with the holomorphic structure.

It is therefore natural to consider the Schwarz lemma for more
general Hermitian connections.
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The Gauduchon Connections

Definition. The Gauduchon connections t∇ (for t ∈ R) are defined by

t∇ = tc∇+ (1− t)`∇,

where `∇ is the Lichnerowicz connection.

† The Lichnerowicz connection `∇ = 0∇ is the restriction of the
complexified Levi-Civita connection to T1,0X.

† The Bismut connection b∇ = −1∇ is the unique Hermitian connection
with totally skew-symmetric torsion.

† The Hermitian conformal connection Hc.∇ =
1
2∇ is the unique

Hermitian connection whose torsion satisfies the Bianchi identity.

† The minimal connection min∇ =
1
3∇ is the unique Hermitian

connection that achieves the minimum of the map ∇ 7→ |∇T|2
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A Monotonicity Theorem

Theorem. (B.–Stanfield). Let (X, ω) be a Hermitian manifold. Then
the Gauduchon Holomorphic Sectional Curvature satisfies

tHSCω ≤ cHSCω −
(1− t)2

4
|cT|2,

where cT denotes the Chern torsion.

In particular, cHSCω < 0 is the strongest curvature constraint, while
cHSCω > 0 is the weakest. This offers an explanation for the significant
difference in their geometric consequences:

† cHSCω ≤ −κ0 < 0 =⇒ Hyperbolic (even if ω is not complete).

† HSCω > 0 =⇒ Rationally connected (for compact Kähler); for
non-Kähler metrics, HSCω > 0 does not imply the existence of any
rational curves.
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Guiding Principle

Instead of computing directly in coordinates, one should work with a
more general Bochner formula. We want to work abstractly for as
long as possible before descending into the wilderness of local
coordinates.

For the Chern connection, this manifests as

∆ω|σ|2 = |∇σ|2 − {Θ(E,h)(σ), σ},

where σ ∈ H0(E) is a holomorphic section and Θ(E,h) is the curvature
of h.

For the Schwarz lemma, σ = ∂f and E = Ω1,0
X ⊗ f ∗T1,0Y.
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A General Bochner Formula

Theorem. (B.–Stanfield). Let (E, h) −→ X be a holomorphic vector
bundle over a Hermitian manifold (X, ω). Let ∇ be a Hermitian
connection on E. Then for any holomorphic section σ ∈ H0(E), we
have

∆ω|σ|2h = |∇1,0σ|2 + |∇0,1σ|2 + 2Re{∇1,0∇0,1σ, σ} − {Θ(E,h)σ, σ}.
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The Gauduchon Schwarz Lemma

Let f : (X, ωg)→ (Y, ωh) be a holomorphic map between Hermitian
manifolds. Endow that source manifold with s∇ and the target manifold
with t∇, where s, t ∈ R\{0, 1/2}. Then

∆ωg |∂f |
2 ≥ (s− 1)2

2s(2s− 1)
sRic(1)g +

s2 + 2s− 1
2s(2s− 1)

sRic(2)g

+
(s− 1)

2(2s− 1)

(
sRic(3)g + sRic(4)g

)
+

(s− 1)3

4(2s− 1)
Re
(
Tg ⊗ Tg

)
+

(s− 1)(1− s− s2 − 3s3)
8s(2s− 1)

|Tg|2 +
(s− 1)2(1− 2s− 3s2)

8s(2s− 1)
|Tg|2

− t
2t− 1

tRBCωh −
(t− 1)

(2t− 1)
tR̃BCωh +

(t− 1)2

4(2t− 1)
|Th|2

− (t− 1)2(t2 + 2t− 1)

8t(2t− 1)
|Th|2 −

(t− 1)4

8t(2t− 1)
|Th|2

+ (2st− s− t)︸ ︷︷ ︸
Zhao–Zheng duality

Re
(
Tg ⊗ Th

)
.
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The Bismut Schwarz Lemma

Endow the source and target with the Bismut connection b∇ = −1∇:

∆ωg |∂f |
2 ≥ 2

3
bRic(1)g −

1
3
bRic(2)g +

1
3

(
bRic(3)g + bRic(4)g

)
+
2
3
Re
(
Tg ⊗ Tg

)
− 1

3
|Tg|2

−2
3
bRBCωh −

1
3
bR̃BCωh +

1
3
|Th|2

+
1
3
|Th|2 −

2
3
|Th|2 + 4Re

(
Tg ⊗ Th

)
.
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The Strominger–Bismut Schwarz Lemma

Let f : (X, ωg)→ (Y, ωh) be a rank r holomorphic map between
Hermitian manifolds. Suppose that

2bRic(1)ωg −
bRic(2)ωg + bRic(3)ωg + bRic(4)ωg ≥ −C1ωg + C2f ∗ωh,

the Chern torsions are bounded by |Tg|2 ≤ Λ0 and |Th|2 ≤ Λ1, and the
Bismut Real Bisectional Curvatures are bounded by

bRBCωh ≤ −κ0,
bR̃BCωh ≤ −κ1.

If C2r − Λ1 + κ0 + 2κ1 > 0, then

|∂f |2 ≤ r(C1 + Λ0)

C2r − Λ1 + κ0 + 2κ1
.
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An Improvement on the Schwarz Lemma

The anti-symmetric component of ∇1,0∂f yields a torsion term for both the
source and target metric.

This can be used to lessen the strain on the curvature terms for the source
and target metrics, using the Peter–Paul inequality:

|c∇∂f |2 ≥ 1
4

(1− τ−1)|Tg|2 +
1
4

(1− τ)|Th|2,

where τ ∈ [0,+∞].
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The Tempered Real Bisectional Curvature

Definition. For a constant τ > 0, we define the Tempered Real
Bisectional Curvature

cRBCτω := cRBCτω −
1
4

(1− τ)Qω,

where Qω is a positive-definite term that is quadratic in the (Chern)
torsion.

In a local frame, Qijk`(ξ) = Tp
ikT

q
j`gpqξ

ijξk`, where ξ is a Hermitian
(1, 1)–tensor.
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A Tempered Schwarz Lemma

Theorem. (B.–Stanfield). Let f : (X, ωg)→ (Y, ωh) be a holomorphic
map of rank r from a Kähler manifold to a Hermitian manifold. If
cRicωg ≥ −C1ωg + C2f ∗ωh and cRBCτωh ≤ −κ0 ≤ 0, then

∆ωg |∂f |
2 ≥ −C1|∂f |2 +

1
r (C2 + κ0)|∂f |4.

Hence, if X is compact, and C2 + κ0 > 0, we have

|∂f |2 ≤ C1r
C2 + κ0

.
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A Tempered Wu–Yau Theorem

Theorem. (B.–Stanfield). Let X be a compact Kähler manifold with
a Hermitian metric ω satisfying cRBCτω < 0. Then X is projective
and canonically polarized.

In particular, X admits a Kähler–Einstein metric with negative Ricci
curvature.
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The Tempered Ricci Curvature

If the source metric is not Kähler, we have the following tempered version
of the Second Chern Ricci Curvature:

Definition. For a constant τ > 0, we define the Tempered Ricci
Curvature

cRicτω := cRic(2)ω +
1
4

(
1− 1

τ

)
Q
2
ω,

where Q2
ω is a positive-definite term that is quadratic in the (Chern)

torsion.

In a local frame, cRic(2)k` := gijRijk` and Q2
k` = gijgpqTip`Tjqk.
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The Tempered Hermitian Curvature Flow

The Tempered Ricci curvature motivates the study of the following
‘Tempered Hermitian Curvature Flow’:

∂ωt

∂t = −cRic(2)ωt −
1
4

(1− τ−1)Q2
ωt − ωt.

This is very close to the Hermitian Curvature Flow that was studied by
Ustinovskiy (2018) and Fei–Phong (2019).

Question. Let (X, ω) be a compact Hermitian manifold with
cRBCτω < 0. Does the Tempered Hermitian Curvature Flow exist for
all time? Does it converge to a Kähler current?
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