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Introduction

In his memorable work [44], G. Mittag-Leffler proved that if one prescribes the principal parts of a mero-

morphic function on a domain in C, then one can always find a meromorphic function having exactly those

principal parts. This problem of existence of a meromorphic function with prescribed principal parts was

later generalised to several complex variables by P. Cousin in [11] and has since been labeled the first Cousin

problem.

Contrary to the one variable situation, the first Cousin problem is not always solvable for domain in Cn>1.

The simplest example of such a domain is the punctured bidisk in C2, obtained from removing the origin

(0, 0) from the bidisk ∆(2)(0, 1) :=
{

(z1, z2) ∈ C2 : |z1| ≤ 1, |z2| ≤ 1
}

. It is a famous theorem of F. Hartogs

[27] that any function which is holomorphic on the punctured bidisk can be extended to a function which is

holomorphic on the entire bidisk. In particular, the punctured bidisk is an example of a domain in C2 which

is not a domain of holomorphy.

In 1934, H. Cartan [6] observed that for any domain in C2 where the first Cousin problem was solvable, must

necessarily have been a domain of holomorphy. Some three years later, K. Oka [50] had shown that on any

domain of holomorphy in Cn, the first Cousin problem was always solvable. For dimension n > 2 however, the

converse is not true. Indeed, Cartan in [7] showed that the first Cousin problem was always solvable on the do-

main C3\{0}, and such a domain is clearly not a domain of holomorphy (see, e.g., [19, p. 130–133] for details).

A few years prior to the result of Mittag-Leffler, K. Weierstrass [65] had proven that if one prescribes the

roots (with multiplicity) of an entire function on a domain in C, then one could find an entire function having

exactly those roots (with multiplicity). This problem was generalised to several complex variables again by

Cousin and has since been referred to as the second Cousin problem. The second Cousin problem is substan-

tially more difficult to solve, in comparison with the first Cousin problem, and is not always solvable on a

domain of holomorphy.

It was his interest in the Cousin problems that lead Stein to introduce the class of manifolds in which now bear

his name. In [62], Stein introduces, for domains G in complex manifolds M2n, the following three axioms1:

1. (Holomorphic Convexity). For every compact subset G0 of G there is a compact subset G1 which

contains it so that for every point P in G which is not contained in G1 there is a holomorphic

function fP on G with

|fP (p)| > Max |fp(K0)| .

1The following is a translation from the original German paper [62].
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2. (Point Separation). For any two different points P1 and P2 in G there is a function fP1,P2 which is

holomorphic on G and which takes on different values at P1 and P2.

3. (Coordinates). For every Q in G there is a system of n holomorphic functions on G whose functional

determinant at Q is non-zero.

In [62], Stein refers to the manifolds which satisfy these three axioms as holomorphically complete. In 1953

however, Cartan [10] in his reformulation of complex analysis based on sheaf cohomology baptised such spaces

as Varieté de Stein, and this language has remained.

Purpose and Structure of the Thesis. The purpose of this thesis is to detail this story and prove Cartan’s

theorem B on the sheaf-theoretic characterisation of Stein spaces. In more detail, the structure of the thesis

is as follows.

1. Chapter 1 fixes the notation that will be used throughout the thesis and proves the extension theorem

of Hartogs. We discuss the calculus of differential forms which is used both to prove the extension

theorem of Hartogs and is used to define Dolbeault cohomology.

2. Chapter 2 introduces the definition of a Stein manifold, and some discussion of domains of holomorphy

is given. We develop the necessary background on sheaves and introduce the general complex analytic

spaces. The non-reduced complex analytic spaces will be the most general setting which we work in.

3. Chapter 3 develops sheaf cohomology, and in particular, sheaf cohomology via flabby and soft sheaves,

Ĉech cohomology, and Dolbeault cohomology. Many of the proofs regarding sheaf cohomology are

omitted in the interests of brevity. A statement of Cartan’s theorem B is given in §3.3 and a proof

is given for simply-connected polydomains in Cn.

4. Chapter 4 is dedicated to the completion of the proof of Cartan’s theorem B for general Stein spaces,

and a discussion of the Cousin problems is given in §4.3.

No new results are presented in this thesis. The primary references used in this thesis are [18], [19], [24], [26],

[37], and [59].

Further Remarks. Let us note the following choices that have been made in the synthesis of this thesis.

· If a proof has been omitted, a reference, with page number, is provided.

· If a result is attributed to a particular mathematician, or has some historical significance to the

development of the theory, often the reference is given without page numbers being specified.

· An extensive list of notation has been provided to assist the reader.

· We have assumed that the reader is familiar with the areas of (one-variable) complex analysis and

differential geometry. At times, we use some language from category theory, but no understanding

beyond the very basic definitions is required here.



Notation

N The natual numbers. We do not assume that 0 is contained in N.

N0 The set N ∪ {0}.
R>0 The positive real numbers, i.e., the set (0,∞).

R≥0 The non-negative real numbers, i.e., the set [0,∞).

R− The set of non-positive real numbers, i.e., the set (−∞, 0).

i
√
−1.

Re(z) The real part of a complex number z.

Im(z) The imaginary part of a complex number z.

arg(z) The argument of a complex number z.

log(z) The logarithm of a complex number z, log(z) := log |z|+ iarg(z).

Q̊ The topological interior of a set Q.

U The topological closure of a set U .

Λ An arbitrary indexing set.

⊕ The direct sum.

⊗ The tensor product.

∧ The wedge product.

7→ “maps to”.

� Signifies that a map is surjective.

ı An inclusion map.

∆(w, r) The disk of radius r ∈ R>0 centred at w ∈ C.

∆(n)(w, r) The polydisk of polyradius r ∈ (R>0)n centred at w ∈ Cn.

C (G) The set of continous functions on G.

C k(G) The set of k–times continuously differentiable functions on G.

C∞(G) The set of smooth functions on G.

C∞0 (G) The set of smooth functions with compact support in G.

O(G) The set of holomorphic functions (or maps) on G.

Ωk(G) The set of smooth k–forms on G.

Ωp,q(G) The set of smooth (p, q)–forms on G.

End(V ) The set of endomorphisms of V .

d The exterior derivative.

∂ The Dolbeault operator.

supp(ρ) The support of function ρ, i.e., the closure of the set-theoretic support.

sgn(σ) The sign of a permutation σ.

conv(K) The convex hull of K.

vi



NOTATION vii

Aff(Rn) The set of affine functions T : Rn → R.

K̂ The holomorphically convex hull of K.

proj A projection map.

resU Restriction to U , also denoted by |U .

IdX The identity map on X.

im(f) The image of f .

ker(f) The kernel of f .

coker(f) The cokernel of f .

K er(f) The presheaf kernel of f .

I m(f) The presheaf image of f .

C oker(f) The presheaf cokernel of f .

f∗ The direct image.

V (f) The zero set of f .

C{z} The ring of convergent power series centred at the origin.

m(z) The maximal ideal in C{z}.
mp The maximal ideal in Op.
mk
p The product mp · · ·mp︸ ︷︷ ︸

k times

.

TM The tangent bundle of a smooth manifold M .

TMC The complexified tangent bundle of an almost complex manifold M .

T ∗M The cotangent bundle of a smooth manifold M .

Λ(V ) The exterior algebra of a vector space V .

A p,q The sheaf of smooth (p, q)–forms.

Z p,q
G The sheaf of ∂–closed forms on G. The subscript G is somtimes omitted.

Bp,q
G The sheaf of ∂–exact forms on a domain G. The subscript G is sometimes omitted.

Dp,q(G) The Dolbeault cohomology groups, i.e., the quotient group Z p,q(G)/Bp,q(G).

(S, π) An analytic stone or an analytic block.

Å(S) The analytic interior of an analytic stone or analytic block S.

� An inclusion of analytic stones or analytic blocks.

NX The nilradical sheaf.

Xred The reduction of a complex analytic space X.

redOX The reduction of the structure sheaf OX , i.e., redOX := OX/NX .

red(f) The reduction of f .

Op The direct sum Op := O ⊕ · · · ⊕ O︸ ︷︷ ︸
p times

.





CHAPTER 1

Analytic Functions of Several Complex Variables

The main purpose of this chapter is twofold. The first is to fix some notation, which is effectively all of

§1.1. The second is to motivate the reader and to convince them that Stein spaces, which are introduced

in Chapter 2, are of interest, and are worthwhile objects to study. In particular, §1.2 is devoted exclusively

to the investigation of domains of convergence of power series in several complex variables, and in the final

section, §1.4, we offer a proof of Hartogs’ extension theorem (see, e.g., [27], [59, p. 172], [18, p. 307]), on

compulsory analytic continuation. In §1.3 we include the calculus of differential forms required for the proof

of Hartogs’ extension theorem and the Dolbeault cohomology theory in §3.1.

§1.1. Formalities, Notation, and Conventions

We set up some notation that will be used throughout this exposition. Note also the table of notation at the

beginning of the thesis.

Definition 1.1.1. The n–dimensional complex plane Cn is defined to be the n–fold cartesian product of

C, i.e., Cn := C× · · · × C︸ ︷︷ ︸
n-times

. The coordinates of Cn are denoted by z := (z1, ..., zn), where zk := xk + iyk,

xk := Re(zk), yk := Im(zk) ∈ R for each 1 ≤ k ≤ n, and i :=
√
−1.

Definition 1.1.2. The complex conjugate of z = (z1, ..., zn) ∈ Cn is denoted by z = (z1, ..., zn) ∈ Cn, where

zk := xk − iyk for each 1 ≤ k ≤ n.

We endow Cn with the Hermitian scalar product ( · , · ) : Cn × Cn −→ R,

(z, w) :=

n∑
j=1

zj wj ,

where z = (z1, ..., zn) and w = (w1, ..., wn). This induces the standard Euclidean norm |·| on Cn by setting

|z| :=
√

(z, z).

Definition 1.1.3. The open polydisk in Cn of polyradius r = (r1, ..., rn) ∈ (R>0)n centred at w = (w1, ..., wn) ∈
Cn is the product of open disks in C, i.e.,

∆(n)(w, r) := {z ∈ Cn : |zj − wj | < rj , 1 ≤ j ≤ n} ,

where z = (z1, ..., zn).
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2 1. ANALYTIC FUNCTIONS OF SEVERAL COMPLEX VARIABLES

Notational Remark 1.1.4. In the one-dimensional case we omit the superscript (n) and write ∆(w, r) for

the disk of radius r ∈ R>0 centred at w ∈ C. Moreover, we permit each component radius rk to be infinite

and adopt the convention ∆(w, 0) := ∅, and ∆(w,∞) := C.

The closed polydisk in Cn of polyradius r = (r1, ..., rn) ∈ (R>0)n centred at w = (w1, ..., wn) ∈ Cn is the

product of the closed disks in C, i.e.,

∆
(n)

(w, r) := {z ∈ Cn : |zj − wj | ≤ rj , 1 ≤ j ≤ n} .

The convention in one dimension is maintained, and we write ∆(w, r) for the closed disk of radius r ∈ R>0

centred at w ∈ C.

Definition 1.1.5. A domain is a connected open subset of Cn.

Notational Remark 1.1.6. A function f : G → C defined on some open set G ⊆ Rn will be referred to as

smooth if it is k–times continuously differentiable for all k ∈ N0.

The following function spaces will be frequently referred to throughout this exposition:

· C (G) denotes the set of all continuous functions on G.

· C k(G) denotes the set of all k–times continuously differentiable functions on G.

· C∞(G) denotes the set of all smooth functions on G.

If the codomain of the map is to be specified, we will write C (G, Y ), for example, which denotes the set of all

continuous maps f : G→ Y . We reserve the term function for maps whose codomain is either R or C.

Definition 1.1.7. A ring is understood to mean a commutative ring with identity. If R is a ring, the identity

element is denoted by 1R.

Convention 1.1.8. We assume that all manifolds discussed in this thesis are second countable.

§1.2. Power Series Representations

In this section, we discuss the power series representations of holomorphic functions of several complex vari-

ables. Throughout this section, we let K be a field, either R or C.

Definition 1.2.1. Let G ⊆ Cn be a domain. A function f : G −→ C is said to be K–differentiable at a point

w ∈ G if there exists a K–linear function dfw : Cn −→ C and a function δ : G −→ C such that

f(z) = f(w) + dfw(z − w) + δ(z)

for all z ∈ G, and δ(z)/ |z − w| → 0 as z → w. The function dfw is referred to as the differential of f at w. If

f is C–differentiable at every point in a neighbourhood of G, we say that f is holomorphic on G.

Definition 1.2.2. Let G be a domain in Cn. A map f = (f1, ..., fm) : G −→ Cm is said to be K–differentiable

at w ∈ G if each component functions f1, ..., fm is K–differentiable at w. If f is C–differentiable at every point

in a neighbourhood of G, we say that f is holomorphic on G.



§1.2. POWER SERIES REPRESENTATIONS 3

Notational Remark 1.2.3. The set of all holomorphic functions, or holomorphic maps, on a domain G ⊆ Cn

is denoted by O(G). If the codomain is not understood from the context and needs to be specified, we will

write O(G, Y ) if, for example, the codomain is Y . We will also adopt the convention that for a closed set

K ⊆ Cn, by f ∈ O(K) we mean that f is the restriction to K of a function f̃ which is holomorphic on an

open neighbourhood of K.

Definition 1.2.4. Let D and G be two domains in Cn. A holomorphic map f : D −→ G is said to be

biholomorphic if f is bijective, holomorphic, and whose inverse f−1 : G −→ D is holomorphic.

It is a well-known result in complex analysis that if f is holomorphic and bijective, the inverse is automatically

holomorphic.

Definition 1.2.5. Let G ⊆ Cn be a domain. Suppose that f : G −→ C is R–differentiable at w ∈ G. For

each 1 ≤ j ≤ n, z ∈ Cn, we define

∂f

∂zj

∣∣∣∣∣
w

:=
1

2

(
∂f

∂xj

∣∣∣∣∣
w

− i ∂f
∂yj

∣∣∣∣∣
w

)
,

∂f

∂zj

∣∣∣∣∣
w

:=
1

2

(
∂f

∂xj

∣∣∣∣∣
w

+ i
∂f

∂yj

∣∣∣∣∣
w

)

Remark 1.2.6. We observe that for any R–differentiable function f , and each 1 ≤ j ≤ n,
∂

∂zj
and

∂

∂zj
satisfy

∂f

∂zj
=

∂f

∂zj
.

Using the operators
∂

∂zj
and

∂

∂zj
we have the following Cauchy–Riemann criterion for C–differentiability in

each variable:

Definition 1.2.7. Let G be a domain in Cn. We say that an R–differentiable function f : G −→ C is

C–differentiable with respect to the variable zk at w ∈ G if
∂f

∂zk

∣∣∣∣∣
w

= 0. If this holds for each 1 ≤ k ≤ n

then f is said to be separately C–differentiable at w ∈ G. If f is separately C–differentiable at all points in a

neighbourhood of G we say that f is separately holomorphic on G.

Theorem 1.2.8. ([34, p. 9–10]). Let G be a domain in Cn. If f is continuous on G then f is holomorphic

on G (in the sense of Definition 1.2.1) if and only if f is separately holomorphic on G.

Remark 1.2.9. Theorem 1.2.8 is often referred to as the Fundamental Theorem of Hartogs. Further details

on theorems of this type may be found in [34, Chapter 1]. We now consider the following higher-dimensional

analogue of the Cauchy integral formula from one complex variable.

Theorem 1.2.10. ([59, p. 18]). Suppose that f : ∆
(n)

(w, r) −→ C is separately holomorphic on ∆
(n)

(w, r)

and continuous on ∆
(n)

(w, r), then for all z ∈ ∆(n)(w, r),

f(z) =
1

(2πi)n

∫
Γ1

· · ·
∫

Γn

f(ζ1, ..., ζn)

(ζ1 − z1) · · · (ζn − zn)
dζn · · · dζ1,

where Γk denotes the boundary of ∆(wk, rk) for each k.
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The following corollary will allow us to obtain a series representation which is the higher-dimensional analogue

of the power series representation for holomorphic functions of a single complex variable.

Corollary 1.2.11. ([59, p. 18]). Suppose that f : ∆
(n)

(w, r)→ C is holomorphic on ∆(n)(w, r) and continu-

ous on ∆
(n)

(w, r), then for all z ∈ ∆(n)(w, r),

f(z) =
1

(2πi)n

∫
Γ1

· · ·
∫

Γn

f(ζ1, ..., ζn)

(ζ1 − z1) · · · (ζn − zn)
dζn · · · dζ1.

The remainder of this section is devoted to the study of higher-dimensional power series, and their algebraic

properties.

Definition 1.2.12. For n ∈ N, a multi-index is an element of Nn0 . For a multi-index J = (j1, ..., jn), we write

|J | := j1 + · · ·+ jn, and J ! := j1! · · · jn!. If z = (z1, ..., zn) ∈ Cn, then zJ := zj11 · · · z
jn
n . For two multi-indices

I = (i1, ..., in), J = (j1, ..., jn), we set I + J := (i1 + j1, ..., in + jn), and I · J := (i1 · j1, ..., in · jn).

Definition 1.2.13. An expression of the form

∞∑
|J |=0

cJ(z − w)J =
∞∑

j1+···+jn=0

cj1···jn(z1 − w1)j1 · · · (zn − wn)jn

is called a formal (multiple) power series centred at w ∈ Cn, where cJ ∈ Cn, and J = (j1, ..., jn) ∈ Nn0 is a

multi-index.

The set of formal power series centred at w can be shown to be a ring which we denote by C[[z1, ..., zn]](w).

Indeed, if f(z) =
∑∞
|J |=0 aJ(z − w)J and g(z) =

∑∞
|J |=0 bJ(z − w)J , then addition and multiplication in

C[[z1, ..., zn]](w) are defined by the respective formulae:

f(z) + g(z) :=
∞∑
|J |=0

(aJ + bJ)(z − w)J , and f(z) · g(z) :=
∞∑
k=0

 ∑
|J+L|=k

aJbL

 (z − w)J+L.

Notational Remark 1.2.14. Observe that the change of coordinates ζj = zj − wj induces an isomorphism

between C[[z1, ..., zn]](w) and C[[ζ1, ..., ζn]](0). Hence, we often write C[[z1, ..., zn]] for the ring of formal power

series, implicitly assuming that all formal power series are centred at 0 ∈ Cn.

Definition 1.2.15. We define the order of a formal power series f(z) :=
∑∞
|J |=0 cJ(z−w)J to be the positive

integer

ord(f) := min {|J | : cJ 6= 0, J ∈ Nn0} .

If cJ = 0 for all J ∈ Nn0 , then we define ord(f) =∞.
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Definition 1.2.16. A sequence of formal power series (fk)k∈N is said to be summable if for each ` ∈ N, there

are only finitely many k ∈ N such that ord(fk) ≤ `.

We now want to discuss the convergence of (multiple) power series. Let us note that for n > 1, there is

no canonical way of ordering the elements of Nn0 . We remind ourselves that an ordering of Nn0 is a bijection

σ : N0 −→ Nn0 . For δ = (δ1, ..., δn) ∈ (R>0)n and σ an ordering of Nn0 , we define a map ‖·‖δ,σ : C[[z1, ..., zn]] −→
R≥0 ∪ {∞},

f(z) =
∞∑
|J |=0

cJ(z − w)J 7−→ ‖f‖δ,σ :=
∞∑
j=0

∣∣cσ(j)

∣∣ δσ(j).

Definition 1.2.17. A formal power series f(z) =
∑∞
|J |=0 cJ(z−w)J is said to converge (absolutely) at z ∈ Cn

relative to the ordering σ if δ ∈ (R>0)n can be chosen such that ‖f‖δ,σ < ∞. The interior of the set of all

z ∈ Cn such that ‖f‖δ,σ <∞ is called the domain of convergence of f relative to the ordering σ.

We have the following important result from first-semester calculus:

Lemma 1.2.18. Suppose that f =
∑∞
|J |=0 cJ(z −w)J converges (absolutely) relative to the ordering σ, then

f converges absolutely relative to any ordering in ∆(n)(w, δ).

Notational Remark 1.2.19. In the circumstances that ‖f‖δ,σ does not depend on the choice of ordering σ,

we simply write ‖f‖δ. In such circumstances, we assume the ordering is lexicographic.

Let us mention some useful properties of ‖ · ‖δ.

Lemma 1.2.20. ([15, p. 91]).

(i) For a summable sequence (fk)k∈N of formal power series, we have∥∥∥∥∥∥
∞∑
j=0

fj

∥∥∥∥∥∥
δ

≤
∞∑
j=0

‖fj‖δ.

(ii) For formal power series f and g we have

‖f · g‖δ ≤ ‖f‖δ‖g‖δ.

(iii) If f(z) :=
∑∞
|J |=0 cJz

J is convergent, then limδ→0 ‖f‖δ = |f(0)|.

Definition 1.2.21. Let G be the domain of convergence of the multiple power series f(z) =
∑∞
|J |=0 cJ(z−w)J .

Suppose that U ⊆ G is an open set and σ : N0 −→ Nn0 is an ordering. We say that f converges uniformly on

U relative to σ if the sequence of partial sums
∑K

j=0 cσ(j)(z−w)σ(j) converges uniformly on U . If f converges

uniformly relative to any choice ordering then the series is said to converge uniformly on U .
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Proposition 1.2.22. (Abel’s Lemma). Consider a multiple power series
∑∞
|J |=0 cJ(z − w)J centred at the

point w ∈ Cn. Suppose that for some ζ ∈ Cn there exists an M ∈ R such that
∣∣cJ(ζ − w)J

∣∣ ≤ M . Let

ρ = (ρ1, ..., ρn), where ρk := |ζk − wk| for each 1 ≤ k ≤ n. Then
∑∞
|J |=0 cJ(z − w)J converges absolutely on

the polydisk ∆(n)(w, ρ) and uniformly on every compact set K ⊂ ∆(n)(w, ρ).

Proof. Fix an ordering of the multi-indices of the series and assume that ρk 6= 0 for each 1 ≤ k ≤ n,

otherwise ∆(n)(w, ρ) = ∅ and the claim is trivial. Further, for each 1 ≤ k ≤ n, define a function rk :

∆(n)(w, ρ) −→ C, rk(z) := 1
ρk
|zk − wk|. For all z ∈ ∆(n)(w, ρ), 0 ≤ |rk(z)| < 1. Set r(z) := (r1(z), ..., rn(z))

and suppose that
∣∣cJ(ζ − w)J

∣∣ ≤M for some M ∈ R. Then∣∣cJ(z − w)J
∣∣ ≤ |cJ | |r(z)|J ρJ ≤ M |r(z)|J <∞, (1)

where the last inequality follows from the fact that |r(z)| < 1 for all z ∈ ∆(n)(w, ρ). This proves the absolute

convergence of
∑∞
|J |=0 cJ(z−w)J on ∆(n)(w, ρ). Now let K ⊂ ∆(n)(w, ρ) be a compact set. For each 1 ≤ k ≤ n,

set Rk := maxz∈K |rk(z)| < 1, and R := (R1, ..., Rn). Then for each z ∈ K, J ∈ Nn0 , the estimate (1) implies

that
∣∣cJ(z − w)J

∣∣ ≤ MRJ . By the Weierstrass M–test (see, e.g., [32, Corollary 11.4]) the series converges

uniformly on K, independent of the choice of ordering. This completes the proof. �

Corollary 1.2.23. Let G be the domain of convergence of the multiple power series
∑∞
|J |=0 cJ(z − w)J

centred at the point w ∈ Cn. For any point ζ ∈ G we may find a polyradius r = (r1, ..., rn) ∈ (R>0)n such

that ζ ∈ ∆(n)(w, r) and ∆
(n)

(w, r) ⊂ G. Moreover, the convergence of
∑∞
|J |=0 cJ(z − w)J is uniformly on

∆
(n)

(w, r).

Proof. As in Proposition 1.2.22, we fix an ordering of the multi-indices. The domain of convergence G

of
∑∞
|J |=0 cJ(z − w)J is open, so we may choose points α = (α1, ..., αn), β = (β1, ..., βn) ∈ G such that

|αk − wk| > |βk − wk| > |ζk − wk| , ∀ 1 ≤ k ≤ n. (2)

Set ρk := |αk − wk|, rk := |βk − wk|, where ρ = (ρ1, ..., ρn) and r = (r1, ..., rn) the induced polyradii. From

(2) it is clear that ζ ∈ ∆(n)(w, r) ⊂ ∆
(n)

(w, r) ⊂ ∆(n)(w, ρ). Further, since the point α lies in the domain of

convergence G, the series
∑∞
|J |=0 cJ(α − w)J converges. In particular, the terms of the series are uniformly

bounded, i.e., there exists some M ∈ R such that
∣∣cJ(α− w)J

∣∣ ≤ M . Then from Proposition 1.2.22 and (2),

∆(n)(w, ρ) ⊂ G, and so ∆(n)(w, r) ⊂ G. Since each rk is finite, ∆
(n)

(w, r) ⊂ G is compact and Proposition

1.2.22 informs us that the series
∑∞
|J |=0 cJ(z − w)J converges uniformly on ∆

(n)
(w, r). �

Remark 1.2.24. By Proposition 1.2.22 the convergence of a multiple power series is independent of the

ordering of the multi-indices. We, therefore, fix the ordering to be lexicographic and omit any further discussion

of the ordering of the multi-indices. In particular, by the domain of convergence (or a multiple power series)

we mean the domain of convergence relative to this lexicographic ordering.

Notational Remark 1.2.25. We fix the following notation. We denote the set of all convergent power series

centred at the origin in Cn by C{z}, where z = (z1, ..., zn). The maximal ideal in C{z} is denoted by m(z).

Similarly, for w = (w1, ..., wm) we write m(w) for the maximal ideal in C{w}.
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Remark 1.2.26. One may show that C{z} is a Noetherian local ring whose maximal ideal is given by

m(z) = 〈z1, ..., zn〉 = {f ∈ C{z} : f(0) = 0}

(see, e.g., [15, p. 81]).

We have the following important results for Noetherian local rings:

Theorem 1.2.27. Suppose that R is a Noetherian local ring with maximal ideal m.

(i) (Nakayama’s Lemma, [1, p. 22]). Suppose that M is a finitely generated R–module. Then the

elements x1, ..., xp ∈M generate the R–module M if and only if their equivalence classes x1, ..., xp ∈
M/mM generate the R/m–vector space M/mM .

(ii) (Krull’s intersection theorem, [15, p. 93]). Then⋂
k∈N

mk = {0},

where mk = m · · ·m︸ ︷︷ ︸
k times

.

Definition 1.2.28. A complex vector space R is called a C–algebra if there is a multiplication · on R,

· : R×R −→ R, (x, y) 7→ x · y,

such that, together with vector addition, R is endowed with a ring structure (in the sense of Definition 1.1.7).

Moreover, this ring and scalar multiplication satisfy:

λ(x · y) = (λx) · y = x · (λy), ∀λ ∈ C, ∀x, y ∈ R.

If R and S are C–algebras, a morphism of C–algebras is a map ϕ : R −→ S such that

(i) ϕ(x+ y) = ϕ(x) + ϕ(y), for all x, y ∈ R.

(ii) ϕ(x · y) = ϕ(x) · ϕ(y), for all x, y ∈ R.

(iii) ϕ(λ · 1R) = λ · 1S , for all λ ∈ C.

An isomorphism of C–algebras is a morphism of C–algebras which is bijective.

Definition 1.2.29. A C–algebra R that is local as a ring is called a local C–algebra if the composition of the

canonical mappings

C · 1R → R� R/m

is an isomorphism of fields, i.e, the identification of C with C · 1R determines a complex vector space isomor-

phism R ∼= C⊕m.

Definition 1.2.30. We say that a C–algebra R is an analytic C–algebra if R is isomorphic (as a C–algebra) to

C{z}/I for some n ≥ 0 and ideal I ⊂ C{z}. A morphism of analytic C–algebras is a morphism of C–algebras

in the sense of Definition 1.2.28.
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Lemma 1.2.31. A morphism f : C{z} −→ C{w} of analytic C–algebras is local, i.e., f maps the maximal

ideal in C{z} into the maximal ideal in C{w}.

Proof. To see that f(m(z)) ⊂ m(w), observe that for x ∈ m(z), f(x) = y + λ for some y ∈ m(w), λ ∈ C.

We want to show that λ = 0. Indeed, if λ is non-zero, then y − λ is invertible, and f(x)− λ = f(x− λ) = y

is invertible also. Since y ∈ m(w), it follows that y is not invertible, and so λ must be zero, as required. �

In the interests of brevity, we omit the proof of the following lemma. The proof is a simple application of (ii)

of Theorem 1.2.27 and may be found in [37, p. 69].

Lemma 1.2.32. Let ϕ : C{z} −→ C{w} be a morphism of C–algebras, and suppose that (fk)k∈N is a sum-

mable sequence of power series in C{z}. Then (ϕ(fk))k∈N is a summable sequence of power series in C{w},
and ϕ

(∑
k∈N fk

)
=
∑

k∈N ϕ(fk).

Note that Definition 1.2.16 and Lemma 1.2.20 transfers to power series in C{z} without change.

Proposition 1.2.33. Let g1, ..., gn ∈ m(w). There is a unique morphism of C–algebras Φ : C{z} −→ C{w},
such that Φ(zk) = gk for each 1 ≤ k ≤ n.

Proof. Let us first show that Φ exists. To this end, let f(z) =
∑∞
|J |=0 cJz

J be a convergent power series

in C{z}. We claim that Φ(f) :=
∑∞
|J |=0 cJg

J is the desired map. We need to show that Φ(f) is a convergent

power series in C{w}. Choose δ = (δ1, ..., δn) ∈ (R>0)n such that ‖f‖δ <∞, and observe that since each gk lies

in m(w), and therefore gk(0) = 0 for each k. By (iii) of Lemma 1.2.20, there is some ε = (ε1, ..., εn) ∈ (R>0)n

such that ‖gk‖ε < δk for each k. We write f(z) =
∑∞

`=0 p` as a series of homogeneous polynomials. Then, by

(i) and (ii) of Lemma 1.2.20,

‖Φ(f)‖ε =

∥∥∥∥∥
∞∑
`=0

Φ(p`)

∥∥∥∥∥
ε

≤
∞∑
`=0

‖Φ(p`)‖ε

=

∞∑
`=0

∥∥∥∥∥∥
∞∑
|J |=`

cj1···jnΦ(z1)j1 · · ·Φ(zn)jn

∥∥∥∥∥∥
ε

≤
∞∑
|J |=0

|cj1···jn | · ‖Φ(z1)‖j1ε · · · ‖Φ(zn)‖jnε

≤
∞∑
|J |=0

|cJ | · δJ = ‖f‖δ < ∞.

So Φ(f) lies in C{w}, and it is clear that Φ defines a morphism of C–algebras.

To show that Φ is unique, suppose Ψ : C{z} −→ C{w} is another morphism of C–algebras such that Ψ(zk) = gk

for each 1 ≤ k ≤ n. Then Φ and Ψ agree on the polynomial subring C[z]. Hence, for each f ∈ C{z}, and each
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k ∈ N, we have (Φ−Ψ)(f) ∈ mk
(w). Therefore, by (ii) of Theorem 1.2.27,

(Φ−Ψ)(f) ∈
⋂
k∈N

mk
(w) = {0}.

�

Now equipped with an understanding of multiple power series, we conclude this section by mentioning the

power series representation of holomorphic functions. This representation is achieved using Corollary 1.2.11

in an analogous manner to the one-variable case.

Theorem 1.2.34. Suppose that f : ∆
(n)

(w, r) −→ C is holomorphic on ∆(n)(w, r) and continuous on

∆
(n)

(w, r), then for all z ∈ ∆(n)(w, r),

f(z) =
∞∑
|J |=0

cJ(z − w)J , cJ =
1

J !

∂|J |f

∂zJ

∣∣∣∣∣
w

,

where
∂|J |f

∂zJ

∣∣∣∣∣
w

:=
∂|J |f

∂zj11 · · · ∂z
jn
n

∣∣∣∣∣
w

.

Convention 1.2.35. In light of Theorem 1.2.34, we may use the expressions holomorphic and analytic

interchangably.

§1.3. The Calculus of Differential Forms

In this section we develop the calculus of differential forms which will be the primary source of machinery in

the proof of Hartogs’ extension theorem. Differential forms will also play a central role in Dolbeault cohomol-

ogy which is treated in Chapter 3.2, (see also, e.g., [18], [26, Chapter 1.D], [31, Chapter 1.3], [59, Chapter 2.6]).

We remind the reader that a smooth manifold M is studied by means of its tangent bundle TM , and its

k–form bundle ΛkT ∗M . Here, T ∗M denotes the cotangent bundle, the dual of the tangent bundle. We first

discuss some elementary linear algebra that will be applied to the tangent spaces of a smooth manifold.

Throughout this section, V denotes a real vector space of dimension 2n.

Definition 1.3.1. An almost complex structure on V is an endomorphism J : V → V satisfying J 2 = −IdV .

Example 1.3.2. An almost complex structure on R2 is given by the matrix

J :=

[
0 1

−1 0

]
.

Any even-dimensional vector V may equipped with an almost complex structure J . Moreover, using J , we

may endow V with a complex scalar multiplication by setting λ · v := Re(λ)v + J Im(λ)v.
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Definition 1.3.3. The complex vector space V C := V ⊗R C is called the complexification of V .

There is a natural inclusion of V into V C given by the map v 7→ v ⊗ 1, and we identify V with the subspace

of V C which is invariant under complex conjugation. Note that complex conjugation in V C is defined by

(v ⊗ λ) := v ⊗ λ, where v ∈ V , λ ∈ C.

Notational Remark 1.3.4. We will abuse notation and denote the extension of J ∈ End(V ) to End(V C)

by C–linearity is also denoted by J .

Definition 1.3.5. The eigenvalues of J : V C −→ V C are ±i. The respective eigenspaces of J corresponding

to i and −i are

V 1,0 =
{
v ∈ V C : J v = iv

}
, and V 0,1 =

{
v ∈ V C : J v = −iv

}
.

Lemma 1.3.6. ([31, p. 26]) The complexification of V splits as the direct sum:

V C = V 1,0 ⊕ V 0,1.

Lemma 1.3.7. ([31, p. 26]) The dual vector space V ∗ = HomR(V,R) has a natural almost complex structure

given by J (f)(v) = f(J (v)). The induced decomposition on (V ∗)C = HomR(V,C) = (V C)∗ is given by

(V ∗)1,0 = {f ∈ HomR(V,C) : f(J (v)) = if(v)} = (V 1,0)∗

(V ∗)0,1 = {f ∈ HomR(V,C) : f(J (v)) = −if(v)} = (V 0,1)∗

Definition 1.3.8. For k ∈ N0, the kth tensor power of V is the set

T kV := V ⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

.

We adopt the convention that T 0V := R. If V is a complex vector space, then T 0V := C.

Definition 1.3.9. The tensor algebra T (V ) of V is the direct sum

T (V ) :=
∞⊕
k=0

T kV,

with multiplication given by the canonical isomorphism T kV ⊗T `V ∼= T k+`V induced from the tensor product.

Definition 1.3.10. Let I be the two-sided ideal generated by the elements of the form v ⊗ v, where v ∈ V .

The exterior algebra Λ(V ) of V is the quotient algebra

Λ(V ) := T (V )/I.

The complexification of the exterior algebra is given by ΛC(V ) := Λ(V )⊗ C.

One may readily verify that I =
⊕

k∈N0
(I ∩ V ⊗k), and for each k ∈ N0 we set Λk(V ) = T kV/Ik, where

Ik := I ∩ V ⊗k. We then define a canonical projection map π : V ⊗k −→ Λk(V ) by setting

π(v1 ⊗ · · · ⊗ vk) := v1 ∧ · · · ∧ vk,
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where ∧ denotes the wedge product.

Lemma 1.3.11. The wedge product ∧ satisfies the following properties.

(i) The wedge product is an alternating product, i.e., v ∧ v = 0 for all v ∈ V .

(ii) The wedge product is anticommutative, i.e., for any σ ∈ Sk, where Sk denotes the symmetric group

on k letters,

vσ(1) ∧ · · · ∧ vσ(k) = sgn(σ)v1 ∧ · · · ∧ vk.

Now let M be a smooth 2n–dimensional manifold. Denote the local coordinates of M by (x1, ..., xn, y1, ..., yn).

For each p ∈M , the tangent space TpM is a real 2n–dimensional vector space given by

TpM := spanR

 ∂

∂x1

∣∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣∣
p

,
∂

∂y1

∣∣∣∣∣
p

, ...,
∂

∂yn

∣∣∣∣∣
p

 .

We may endow each tangent space TpM with an almost structure Jp by setting

Jp

 ∂

∂xk

∣∣∣∣∣
p

 :=
∂

∂yk

∣∣∣∣∣
p

, and Jp

 ∂

∂yk

∣∣∣∣∣
p

 := − ∂

∂xk

∣∣∣∣∣
p

,

for each 1 ≤ k ≤ n.

Definition 1.3.12. An almost complex manifold is a pair M := (M,J ), where M is a smooth manifold of

dimension 2n, and J denotes the almost complex structure Jp on each tangent space TpM , i.e., for each

p ∈M , we have J 2
p = −IdTpM .

Remark 1.3.13. Despite the fact that we are yet to define complex manifolds, let us note that the distinction

between an almost complex manifold and a complex manifold is whether each of these locally-defined complex

structures Jp ∈ End(TpM) may be glued together to obtain an endomorphism J ∈ End(TM). The spheres

S4k, k ∈ N, are examples of almost complex manifolds which are not complex manifolds, (see, e.g., [2], [45,

Chapter 7], [39, Chapter IX], [46, Chapter 8.7]).

As promised, we now apply the linear algebra we have discussed so far to the tangent spaces of smooth

manifolds. We will assume throughout the remainder of this section that M is an almost complex manifold

of dimension 2n.

Definition 1.3.14. The complexified tangent space of M (at p) is the complex vector space

TC
p M := TpM ⊗R C.

By Lemma 1.3.6 the almost complex structure Jp induces the splitting

TC
p M = T 1,0

p M ⊕ T 0,1
p M,

where T 1,0
p M :=

{
v ∈ TC

p M : Jpv = iv
}

and T 0,1
p M :=

{
v ∈ TC

p M : Jpv = −iv
}

. The vector spaces T 1,0
p M

and T 0,1
p M are commonly referred to as the holomorphic and anti-holomorphic tangent spaces of M at p,

respectively.
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The complexified tangent bundle π : TCM −→M is the complexification of the tangent bundle, i.e., TCM :=

TM ⊗R C. In other words, the fibres of π : TCM −→ M are given by π−1(p) = TpM ⊗R C for each p ∈ M .

The above decomposition on each tangent space induces the splitting of TCM into the direct sum of the

holomorphic tangent bundle T 1,0M and the anti-holomorphic tangent bundle T 0,1M . Moreover, T 1,0M and

T 0,1M are respectively trivialised (in a neighbourhood of p) by

∂

∂zk
:=

1

2

(
∂

∂xk
− Jp

∂

∂yk

)
and

∂

∂zk
:=

1

2

(
∂

∂xk
+ Jp

∂

∂yk

)
,

where zk = xk + Jpyk, for each k = 1, ..., n.

Definition 1.3.15. The complexified exterior algebra (at p ∈M) is the C–algebra

Λ•C(T ∗pM) :=

∞⊕
k=0

Λk(T ∗pM)⊗R C.

The set of all Λ•C(T ∗pM) is called the complexified exterior bundle, and for any k ∈ N, we call ΛkCM the

complexified k–form bundle.

We have the following two subbundles of Λ1
CM :

Λ1,0M :=
{
ξ ∈ Λ1

CM : ξ(v) = 0, ∀v ∈ T 0,1M
}
,

Λ0,1M :=
{
ξ ∈ Λ1

CM : ξ(v) = 0, ∀v ∈ T 1,0M
}
.

The kth exterior power of Λ1,0M and Λ0,1 is respectively denoted by Λk,0M and Λ0,kM . Further, we have the

splitting

ΛkCM =
⊕
p+q=k

Λp,qM.

Definition 1.3.16. For an open set U ⊆M , we denote by Ωk(U) the space of smooth sections of ΛkM over

U . Elements of Ωk(U) are referred to as smooth k–forms (or differential k–forms) on U . Similarly, we denote

by Ωp,q(U) the space of smooth sections of Λp,qM over U . Elements of Ωp,q(U) are referred to as smooth

(p, q)–forms (or differential (p, q)–forms) on U .

Remark 1.3.17. For our purposes, we will only be concerned only with forms defined on domains in Cn. In

this case, the almost complex structure J is inherrited from the multiplication by i defined on Cn. Moreover,

in the coordinates z = (z1, ..., zn), a smooth (p, q)–form ω ∈ Ωp,q(G), may be written

ω =
∑
I,J

′ωIJdzI ∧ dzJ ,

where the functions ωIJ are smooth in G, dzI := dzi1 ∧ · · ·∧dzip , and dzJ := dzj1 ∧ · · ·∧dzjq . Here, the prime

summation signifies that the summation is ordered, i.e., 1 ≤ i1 < · · · < ip ≤ n.

Note that if the functions ωIJ may be taken to be holomorphic on U , we say that ω =
∑

I,J ωIJdzI ∧ dzJ is a

holomorphic (p, q)–form.
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Remark 1.3.18. We remind ourselves that on the space Ωk(G) of k–forms we have a differential operator

given by the exterior derivative d : Ωk(G) −→ Ωk+1(G), specified by the formula

d

(∑
I

fIdxI

)
=
∑
I,k

∂fI
dxk

dxk ∧ dxI .

For domains G ⊆ Cn we have a splitting of k–forms given by

Ωk(G) = Ωp,0(G)⊕ Ω0,q(G),

where p+q = k. This induces a splitting of the exterior derivative d = ∂+∂, where ∂ : Ωp,0(G) −→ Ωp+1,0(G)

and ∂ : Ω0,q(G) −→ Ω0,q+1(G) are defined by

∂

(∑
I

fIdzI

)
=
∑
I,k

∂fI
∂zk

dzk ∧ dzI , and ∂

(∑
J

fJdzJ

)
=
∑
J,k

∂gJ
∂zk

dzk ∧ dzJ .

We will be concerned primarily with the Dolbeault operator ∂. We extend ∂ to be defined on Ωp,q(G) for

possibly non-zero p by setting

∂

∑
I,J

fIdzI ∧ dzJ

 =
∑
I,J,k

∂fI
∂zk

dzk ∧ dzI ∧ dzJ .

The following proposition details some elementary properties of the Dolbeault operator ∂.

Proposition 1.3.19. The Dolbeault operator ∂ : Ωp,q(G) −→ Ωp,q+1(G), satisfies the following properties.

(i) (Invariance). ∂ is well-defined, independent of the choice of coordinates.

(ii) (Linearity). For all ω, η ∈ Ωp,q(G), λ1, λ2 ∈ C,

∂(λ1ω + λη) = λ1∂ω + λ2∂η.

(iii) (Leibniz Rule). If ω ∈ Ωp,q(G) and η ∈ Ωr,s(G), then

∂(ω ∧ η) = ∂ω ∧ η + (−1)p+qω ∧ ∂η.

(iv) (Nilpotence). ∂◦∂ = 0. More explicitly, by ∂◦∂ we mean the composition of ∂ : Ωp,q(G) −→ Ωp,q+1(G)

and ∂ : Ωp,q+1(G) −→ Ωp,q+2(G).

Proof. Statements (i) and (ii) are clear. Let ω =
∑

I,J ωIJdzI ∧ dzJ and η =
∑

K,L ηKLdzK ∧ dzL. To

prove (iii) we need to simply observe that the ∂ operator on smooth functions, i.e., (0, 0)-forms, is given by

f 7→
n∑

α=1

∂f

∂zα
dzα.
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Therefore, from the usual Leibniz rule for functions, we have

∂(ω ∧ η) = ∂

 ∑
I,J,K,L

ωIJηKLdzI ∧ dzJ ∧ dzK ∧ dzL


=

∑
I,J,K,L,α

(
ηKL

∂ωIJ
∂zα

dzα + ωIJ
∂ηKL
∂zα

dzα

)
∧ dzI ∧ dzJ ∧ dzK ∧ dzL

=

∑
I,J,α

∂ωIJ
∂zα

dzα ∧ dzI ∧ dzJ

 ∧
∑
K,L

ηKLdzK ∧ dzL


+

∑
I,J,K,L,α

ωIJ
∂ηKL
∂zα

dzα ∧ dzI ∧ dzJ ∧ dzK ∧ dzL

= ∂ω ∧ η +

∑
I,J

ωIJdzI ∧ dzJ

 (−1)|I|+|J |
∑
K,L,α

∂ηKL
∂zα

dzα ∧ dzK ∧ dzL

= ∂ω ∧ η + (−1)p+qω ∧ ∂η.

To prove (iv), we have the similar computation:

∂(∂ω) = ∂

∑
I,J,α

∂ωIJ
∂zα

dzα ∧ dzI ∧ dzJ


=

∑
I,J,α,β

∂2ωIJ
∂zβ∂zα

dzβ ∧ dzα ∧ dzI ∧ dzJ = 0,

where the last equality follows from the symmetry of the complex Hessian

(
∂2ωIJ
∂zβ∂zα

)
and the anti-symmetry

of the wedge product1. �

There is a well-established integration theory for differential forms on smooth manifolds. This theory transfers

over to complex manifolds with effectively no change (see, e.g., [40, Chapter 14], [59, Chapter 2]. for further

details).

Theorem 1.3.20. (Stokes’ theorem). Let G ⊂ Cn be a bounded domain with smooth boundary ∂G. Then

for any smooth (n− 1)-form ω ∈ Ωn−1(U), where U is a neighbourhood of the boundary ∂G,∫
G
dω =

∫
∂G
ω.

From Theorem 1.3.20, we obtain a generalisation of the standard Cauchy integral formula in one complex

variable.

1It is difficult to write the details down explicitly without the notation becoming too cumbersome.
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Proposition 1.3.21. (Cauchy–Pompeiu formula [54]). Let G ⊂ C be a bounded domain with smooth

boundary. Let U be an open neighbourhood of G and suppose that f is an R–differentiable function on U .

Then for all z ∈ G,

f(z) = − 1

2πi

∫
∂G

f(ζ)

ζ − z
dζ +

1

2πi

∫
G

∂f

∂ζ
(ζ)

dζ ∧ dζ
ζ − z

. (3)

Proof. Fix a point z ∈ G and let ∆(z, r) ⊂ G be a sufficiently small disk centred at z such that

∆(z, r) ⊂ G. We will denote the boundary of ∆(z, r) by Γr and set Gr := G\∆(z, r). Let us write

∂f

∂ζ

dζ ∧ dζ
ζ − z

=
∂

∂ζ

(
f(ζ)

ζ − z

)
dζ ∧ dζ = d

(
f(ζ)

ζ − z
dζ

)
,

where in the last equality we have used the fact that dζ ∧ dζ = 0. Then by Theorem 1.3.20,∫
Gr

∂f

∂ζ

dζ ∧ dζ
ζ − z

=

∫
Gr

d

(
f(ζ)

ζ − z
dζ

)
=

∫
∂G

f(ζ)

ζ − z
dζ −

∫
Γr

f(ζ)

ζ − z
dζ. (4)

We want to take the limit of (4) as r → 0. We consider first the integral∫
Gr

∂f

∂ζ

dζ ∧ dζ
ζ − z

=

∫
G

∂f

∂ζ

dζ ∧ dζ
ζ − z

−
∫

∆(z,r)

∂f

∂ζ

dζ ∧ dζ
ζ − z

. (5)

The integral over G in (5) is independent of r, so we need only concern ourselves with the integral over the

disk ∆(w, r). Since
∂f

∂ζ
is continuous and

dζ ∧ dζ
ζ − z

is a bounded measure, we see that

∫
∆(z,r)

∂f

∂z

dζ ∧ dζ
ζ − z

→ 0

as r → 0. Proceeding in a similar manner for the integral over Γr in (4), write∫
Γr

f(ζ)

ζ − z
dζ =

∫ 2π

0
f(z + reiϑ)idϑ.

Then ∣∣∣∣∫ 2π

0
f(z + reiϑ)idϑ− 2πif(z)

∣∣∣∣ =

∣∣∣∣∫ 2π

0
f(z + reiϑ)idϑ− i

∫ 2π

0
f(z)dϑ

∣∣∣∣
≤

∫ 2π

0

∣∣∣f(z + reiϑ)− f(z)
∣∣∣ dϑ

≤ 2πr max
0≤ϑ≤2π

∣∣∣f(z + reiϑ)
∣∣∣ −→ 0

as r → 0. Hence, by taking the limit as r → 0 of (4),∫
G

∂f

∂ζ

dζ ∧ dζ
ζ − z

=

∫
∂G

f(ζ)

ζ − z
dζ − 2πif(z). (6)

Rearranging (6) and using the fact that dζ ∧ dζ = −dζ ∧ dζ we obtain

f(z) =
1

2πi

∫
∂G

f(ζ)

ζ − z
dζ +

1

2πi

∫
G

∂f

∂ζ

dζ ∧ dζ
ζ − z

. (7)
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Conjugating this expression, we see that

f(z) = − 1

2πi

∫
∂G

f(ζ)

ζ − z
dζ − 1

2πi

∫
G

∂f

∂ζ

dζ ∧ dζ
ζ − z

= − 1

2πi

∫
∂G

f(ζ)

ζ − z
dζ − 1

2πi

∫
G

∂f

∂ζ

dζ ∧ dζ
ζ − z

= − 1

2πi

∫
∂G

f(ζ)

ζ − z
dζ +

1

2πi

∫
G

∂f

∂ζ

dζ ∧ dζ
ζ − z

,

which is exactly (3) with f replaced by f . �

Remark 1.3.22. Observe that if f is holomorphic in U , we recover the familiar Cauchy integral of one

complex variable from (7).

Proposition 1.3.23. Let G ⊂ C be a bounded domain with smooth boundary. Let U be an open neigh-

bourhood of G with f ∈ C 1(U,C), as in Proposition 1.3.21. Then there exists a function g ∈ C 1(U,C) such

that
∂g

∂z
(z) = f(z).

Proof. The proof is analogous to the proof of Proposition 1.3.21. Fix a point z ∈ G and let ∆(z, r) ⊂ G
be a sufficiently small disk centred at z such that ∆(z, r) ⊂ G. As before, let Γr denote the boundary of

∆(z, r) and set Gr := G\∆(z, r). Now for all ζ 6= z,

d log |ζ − z|2 =
dζ

ζ − z
+

dζ

ζ − z
. (8)

Then by Theorem 1.3.20, ∫
∂G
f(ζ) log |ζ − z|2 dζ −

∫
Γr

f(ζ) log |ζ − z|2 dζ

=

∫
Gr

d
(
f(ζ) log |ζ − z|2 dζ

)
=

∫
Gr

∂f

∂ζ
(ζ) log |ζ − z|2 dζ ∧ dζ +

∫
Gr

f(ζ)
dζ ∧ dζ
ζ − z

. (9)

To determine the limit of the above equation as r → 0, set ζ = z + reiϑ. Then dζ = ireiϑdϑ and dζ =

−ire−iϑdϑ. Hence, ∣∣∣∣∫
Γr

f(ζ) log |ζ − z|2 dζ
∣∣∣∣ =

∣∣∣∣∫ 2π

0
f(z + reiϑ) log

∣∣∣reiϑ∣∣∣2 (−ire−iϑ)dϑ

∣∣∣∣
≤

∣∣∣∣2 ∫ 2π

0
f(z + reiϑ)r2dϑ

∣∣∣∣
≤ 4πr2 max

0≤ϑ≤2π

∣∣∣f(z + reiϑ)
∣∣∣ → 0

as r → 0. Therefore, using (9), we have∫
∂G
f(ζ) log |ζ − z|2 dζ =

∫
G

∂f

∂ζ
(ζ) log |ζ − z|2 dζ ∧ dζ +

∫
G
f(ζ)

dζ ∧ dζ
ζ − z

.
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Define

g(z) :=
1

2πi

∫
G
f(ζ)

dζ ∧ dζ
ζ − z

.

Then

g(z) =
1

2πi

∫
G
f(ζ)

dζ ∧ dζ
ζ − z

=
1

2πi

∫
∂G
f(ζ) log |ζ − z|2 dζ − 1

2πi

∫
G

∂f

∂ζ
(ζ) log |ζ − z|2 dζ ∧ dζ. (10)

We claim that
∂g

∂z
= f . Differentiating (10), we see from (8) that

∂g

∂z
=

1

2πi

∫
∂G
f(ζ)

(
∂

∂z
log |ζ − z|2

)
dζ − 1

2πi

∫
G

∂f

∂ζ
(ζ)

(
∂

∂z
log |ζ − z|2

)
dζ ∧ dζ

= − 1

2πi

∫
∂G

f(ζ)

ζ − z
dζ +

1

2πi

∫
G

∂f

∂ζ
(ζ)

dζ ∧ dζ
ζ − z

, (11)

where differentiation under the integral sign is justified since the resulting integrand is still integrable (see,

e.g., [35, p. 213]). Since this is exactly the Cauchy–Pompeiu representation formula (3), this completes the

proof. �

§1.4. Hartogs’ Extension Theorem

It was known even in the time of Riemann [57] and Weierstrass [64] that a function holomorphic in a domain

G\{p} ⊆ C and locally bounded in a neighbourhood of p, extends to a function holomorphic over all of G. In

this section, we make precise what it means for a holomorphic function to extend analytically and prove the

extension theorem due to F. Hartogs [27].

Definition 1.4.1. Let G ⊂ Cn be an open set, f ∈ O(G), and p ∈ Cn\G. We say that f extends analytically

to p if there is a connected open neighbourhood U of p and an analytic function f̃ ∈ O(U) such that, for some

non-empty open set V ⊂ G ∩ U , f̃ |V = f |V .

Remark 1.4.2. Notice that since we do not require f and f̃ to coincide on all of G∩U , it may not necessarily

be the case that f̃ is analytic on G ∪ U . Moreover, Definition 1.4.1 ensures that the analytic extension f̃ is

single-valued.

Theorem 1.4.3. (Hartogs’ Extension Theorem). Let G ⊂ Cn>1 be a domain, not necessarily bounded. Let

K ⊂ G be a compact set with G\K connected. If f ∈ O(G\K), then there exists a function f̃ ∈ O(G) such

that f̃ |G\K = f . In other words, every function analytic on G\K extends analytically to a function analytic

on all of G.

Proof. Let U be an open neighbourhood of K such that U ⊂ G. Take ρ ∈ C∞0 (G) to be a smooth

function compactly supported2 in G, with ρ(z) = 1 for all z ∈ U . For each 1 ≤ k ≤ n we will define

2We remind the reader that the support of the function ρ is the set supp(ρ) := {z ∈ G : ρ(z) 6= 0}. The space of smooth

functions of compact support in G is denoted by C∞0 (G).
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gk : G −→ C by

gk := f · ∂ρ
∂zk

.

Note that since ρ(z) = 1 for all z ∈ U , gk(z) = 0 for all z ∈ U . Therefore, g only takes non-zero values in

supp(ρ) ∩G\U and in G\U , f is defined and holomorphic.

Proceeding formally,

∂gk
∂z`

=
∂f

∂z`

∂ρ

∂zk
+ f · ∂2ρ

∂zk∂z`
= f · ∂2ρ

∂zk∂z`
=

∂g`
∂zk

. (12)

Let us now fix z′ = (z2, ..., zn) ∈ Cn−1 and define

u(z1, z
′) :=

1

2πi

∫
G

g1(ζ, z′)

ζ − z1
dζ ∧ dζ.

By Proposition 1.3.23, we see that
∂u

∂z1
= g1, and for all k > 1,

∂u

∂zk
=

1

2πi

∫
C

∂g1

∂zk
(ζ, z′)

dζ ∧ dζ
ζ − z1

(12)
=

1

2πi

∫
C

∂gk
∂z1

(ζ, z′)
dζ ∧ dζ
ζ − z1

(3)
= gk. (13)

Differentiation under the integral sign is permitted as in the proof of Proposition 1.3.23. For z outside of

the support of ρ,
∂u

∂zk
(z) = 0 for each 1 ≤ k ≤ n, and so u(z) is holomorphic for all z 6∈ supp(ρ). Since ρ

is compactly supported, for any z′ ∈ Cn−1, with ‖z′‖ sufficiently large, g1(ζ, z′) = 0 for any ζ ∈ C. So u is

identically zero on the unbounded connected component Z of G\K.

Define a function f̃ := (1−ρ) ·f+u on G which, upon restricting to an open set V ⊂ Z∩(G\supp(ρ)) ⊂ G\K,

coincides with f . To see that f̃ is holomorphic on G, we observe that

∂f̃

∂zk
= (1− ρ) · ∂f

∂zk
− f · ∂ρ

∂zk
+

∂u

∂zk

(13)
= (1− ρ) · ∂f

∂zk
− gk + gk = 0,

for all z in a neighbourhood of G\K, where the last equality follows from the holomorphy of f on G\K.

Similarly, note that on U , ρ ≡ 1, so the above formal computaton reduces to

∂f̃

∂zk
=

∂u

∂zk
= gk = f · ∂ρ

∂zk
= 0.

Therefore, f̃ is a holomorphic function on G and is an analytic extension of f in the sense of Definition 1.3.1,

as required. �

Remark 1.4.4. Let us make explicit that Theorem 1.4.3 does not hold in one dimension. To see this, simply

take G to be the entire complex plane and K = {0}. The function f(z) = 1/z is holomorphic on all of G\K
but does not extend to a function holomorphic on C.
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Remark 1.4.5. The assumption that G\K is connected is a necessary condition. To see this, for n > 1 let

K :=
{
z ∈ Cn : |z| = 1

2

}
and G = B(n)(0, 1). Define the function f : G\K −→ C by

f(z) =

1, 1
2 < |z| < 1,

0, |z| < 1
2 .

It is clear that f is analytic on G\K, but cannot be extended to a function analytic on G.

Remark 1.4.6. Theorem 1.4.3 allows us to strengthen classical results of complex analysis in the higher-

dimensional setting. For example, an immediate corollary of Hartogs’ extension theorem is the following

strengthening of Liouville’s theorem:

Corollary 1.4.7. Let K ⊂ Cn be a compact set such that Cn\K is connected. Suppose that f : Cn\K −→ C
is analytic and bounded. Then f is constant.



CHAPTER 2

The General Theory of Complex Analytic Spaces

The purpose of this chapter is to introduce the main objects of this exposition – the Stein spaces. These

objects form a particular class of complex analytic spaces which, in the smooth category, were introduced by

Karl Stein in his memorable work [62]. We develop the theory behind these general complex analytic spaces

with motivation coming from the familiar geometric notion of a manifold.

§2.1. Stein Manifolds

We begin by surveying some results for domains in holomorphy in Cn. This will serve as motivation for the

definition of a Stein manifold which we introduce in this section.

Definition 2.1.1. Suppose that f is a holomorphic function on a domain G. Let w be a point on the

boundary of G. We say that f is completely singular at w if for every connected neighbourhood U ⊆ Cn of

w, and every connected component D ⊂ U ∩ G, there does not exist a holomorphic function g ∈ O(U) such

that g|D = f |D.

Example 2.1.2. Let f(z) := log(z) be the branch of the logarithm onG := C\R−. This function is completely

singular only at the origin z = 0, but not at any other point along R−.

Definition 2.1.3. Let G ⊆ Cn be a domain. We say that G is a

(i) weak domain of holomorphy if for each point w ∈ ∂G there exists a function f ∈ O(G) which is

completely singular at w.

(ii) domain of holomorphy if there exists a function which is completely singular at every point of the

boundary ∂G.

Example 2.1.4. It is clear that every domain in C is a weak domain of holomorphy. Indeed, for any point

p ∈ ∂G, the function z 7→ (z − p)−1 is completely singular at p. Moreover, the unit disk ∆(0, 1) is a domain

of holomorphy since the function z 7→
∑∞

k=0 z
k! is completely singular at all points z ∈ C with |z| = 1.

Remark 2.1.5. It turns out that the notions of a weak domain of holomorphy and domain of holomorphy, as

given in Definition 2.1.3, coincide. The proof of the fact that every weak domain of holomorphy is a domain

of holomorphy is non-trivial. In the literature, this fits in the so-called Levi problem on the classification of

domains of holomorphy based on properties of their boundaries. This phenomenon was first observed by E.

E. Levi in [42] in some very special cases. For domains in C2 this was solved by K. Oka [51], and in Cn>2 by

Oka [53] (see also, e.g., [4], [49]).

A very useful characterisation of domains of holomorphy was given by H. Cartan and P. Thullen in [5]. Their

characterisation is based on the notion of holomorphic convexity. Let us give the definition:

20
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Definition 2.1.6. Let G ⊆ Cn be a domain, and K ⊂ G a compact set. The holomorphically convex hull K̂

of K is

K̂ :=
⋂

f∈O(G)

{
z ∈ G : |f(z)| ≤ max

z∈K
|f(z)|

}
.

We say that G is holomorphically convex if for every compact set K ⊂ G, the holomorphically convex hull

K̂ ⊂ G is also compact.

Remark 2.1.7. To convince the reader that holomorphic convexity is an appropriate name, we note that the

following characterisation of ordinary geometric convexity. Indeed, we say that a set S ⊆ Rn is convex if for

all x, y ∈ S, and all 0 ≤ t ≤ 1, the line segment tx + (1 − t)y ∈ S. One may reformulate this however, as

requiring that the convex hull conv(K) ⊂ S is compact for all compact sets K ⊂ S. Further, recall that a

function T : Rn → R is said to be affine if there exists a linear function A : Rn → R and a vector v ∈ Rn such

that T (x) := A(x) + v. Let Aff(Rn) denote the set of all affine functions on Rn. One may show the following

characterisation of the convex hull:

conv(K) =
⋂

T∈Aff(Rn)

{
x ∈ Rn : |T (x)| ≤ max

x∈K
|T (x)|

}
,

(see, e.g., [18, Chapter II.5]).

Lemma 2.1.8. Consider the sets K ⊂ Cn and L ⊂ Cm. Then

(i) K̂ ⊂ Cn is closed. In particular, given any point p ∈ Cn\K̂, there exists an analytic function

f ∈ O(Cn) such that

‖f‖K < 1 < |f(p)| .

(ii) K̂ × L ⊂ K̂ × L̂.

Proof. The fact that K̂ is closed is clear. Moreover, if p 6∈ K̂, then for every f ∈ O(G) we have

|f(p)| > ‖f‖K . So there exists a constant λ ∈ R such that ‖f‖K < λ < |f(p)|, and by normalising λ to 1 we

obtain (i).

We observe that K̂ × Cm ⊂ K̂ ×Cm and Ĉn × L ⊂ Cn× L̂. Further, we have K ×L ⊂ (K ×Cm)∩ (Cn×L),

and so

K̂ × L ⊂ (K̂ × Cm) ∩ (Ĉn × L) ⊂ (K̂ × Cm) ∩ (Cn × L̂) = K̂ × L̂,

as required. �

We now state the theorem of Cartan and Thullen on domains of holomorphy, (see, e.g., [5], [18, p. 76–82],

[59, p. 182–184]).

Theorem 2.1.9. (Cartan–Thullen). A domain G ⊆ Cn is a domain of holomorphy if and only if G is holo-

morphically convex.

Before introducing the definition of a Stein manifold, we remind the reader of the definition of a complex

manifold.
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Definition 2.1.10. Let X be a smooth manifold of dimension 2n, and let (Uλ, ϕλ)λ∈Λ a smooth atlas for X,

i.e., X is covered by the open sets (Uλ)λ∈Λ, and the transition maps

ϕλ ◦ ϕ−1
µ : ϕµ(Uµ ∩ Uλ) −→ ϕλ(Uµ ∩ Uλ)

are smooth in the sense of maps between open sets in Cn. If these transition maps are holomorphic then we

say that X is a complex manifold of complex dimension n. The pair (Uλ, ϕλ) is called a holomorphic chart

and an atlas consisting of holomorphic charts is referred to as a holomorphic atlas. Two holomorphic atlases

on X are said to be equivalent if their union is again a holomorphic atlas for X.

Definition 2.1.11. A complex manifold of dimension n is a smooth manifold of (real) dimension 2n equipped

with an equivalence class of holomorphic atlases.

Definition 2.1.12. Let X and Y be two complex manifolds of dimension m and n respectively. A map

f : X −→ Y is said to be holomorphic (or analytic) if for every chart (Uλ, ϕλ) of X and every chart (Vλ, ψλ)

of Y such that f(Uλ) ⊂ Vλ, the map ψλ ◦ f ◦ ϕ−1
λ is a holomorphic map between open subsets of Cm and Cn.

If f : X −→ Y is holomorphic, bijective, and whose inverse f−1 : Y −→ X is holomorphic, then f is said to

be biholomorphic.

Remark 2.1.13. It is a well-known result that a bijective holomorphic function f : X −→ Y automatically

has a holomorphic inverse, (see, e.g., [22, p. 19]).

Note that in [62] the following class of manifolds are called holomorphically complete.

Definition 2.1.14. (Stein). Let X be an n–dimensional complex manifold. We say that X is a Stein manifold

if

(i) X is holomorphically convex.

(ii) X is holomorphically separable.

For complex manifolds, the definition of holomorphic convexity is the straightforward generalisation of Def-

inition 2.1.6. Indeed, a complex manifold X is said to be holomorphically convex if for every compact set

K ⊂ X the holomorphically convex hull

K̂ =
⋂

f∈OX(X)

{
z ∈ X : |f(z)| ≤ sup

z∈K
|f(z)|

}

is compact. We say that X is holomorphically separable if for any two distinct points x, y ∈ X, there exists a

holomorphic function f ∈ OX(X) such that f(x) 6= f(y).

Remark 2.1.15. The assumption of holomorphic separability expresses, in a vague sense, the ‘wealth of

analytic functions’ defined on the complex manifold. The assumption of holomorphic separability informs us

that no Stein manifold can be compact.
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Remark 2.1.16. The motivation for such a class of complex manifolds (as described in, e.g., [30], [56]),

originated from Stein’s interest in the Cousin problems, which we discuss in §4.3, (see also [11]). Indeed,

throughout the former half of the twentieth century, it was understood that many problems in several complex

variables, such as the first Cousin problems, could be solved on a class of complex manifolds which had similar

properties to non-compact Riemann surfaces and domains of holomorphy.

Remark 2.1.17. Note that if M is a domain in Cn, condition (ii) of Definition 2.1.14 are trivially satisfied.

Therefore, by the Cartan–Thullen theorem, the Stein manifolds in Cn are exactly the domains of holomorphy.

One may also show that any non-compact Riemann surface is a Stein manifold (see, e.g., [17, p. 205]).

§2.2. Presheaves and Sheaves

Definition 2.2.1. A presheaf of rings R on a topological space X consists of the following data.

(i) To every open set U , there is an assigned ring R(U).

(ii) Given an inclusion of open sets U ⊂ V ⊂ X, there is an induced ring homomorphism resVU : R(V ) −→
R(U) called a restriction map.

(iii) This data satisfies:

(a) If U ⊂ V ⊂W ⊂ X is an inclusion of open sets, then resWU = resVU ◦ resWV .

(b) resUU = IdU .

(c) R(∅) = {0}.

Note that by replacing the term “ring” in Definition 2.2.1 with “set”, “abelian group”, etc., we obtain a

presheaf of sets, a presheaf of abelian groups, etc. In the circumstance that a particular definition or result

does not depend on what type of presheaf we consider, we will simply write that R is a presheaf on X.

Let R be a presheaf on X, and U ⊂ X an open subset of a topological space X. An element of R(U) is called

a section of R over U . Moreover, for x ∈ X, we set

Rx := lim
−→
U

R(U),

where the above right-hand-side is the direct limit over all open neighbourhoods U of x. The ring Rx is called

the stalk of R at x, and the elements of Rx are called germs.

Definition 2.2.2. Fix a topological space X and let R and S be two presheaves on X. For convenience,

assume that R and S are presheaves of abelian groups1. A morphism of presheaves f : R −→ S is a

collection of group homomorphisms fU : R(U) −→ S (U), where U ⊆ X is open, such that for any inclusion

V ⊆ U , the diagram

1This definition may be equally applied to sheaves of sets, rings, etc.
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R(U) S (U)

R(V ) S (V )

resUV

fU

resUV

fV

commutes.

Definition 2.2.3. Let f : R −→ S be a morphism of presheaves over a topological space X. For each open

set U ⊂ X, let fU : R(U) −→ S (U) be the associated map on sections. We define the following presheaves:

(i) the presheaf kernel K er(f), U 7→ ker(fU ).

(ii) the presheaf cokernel C oker(f), U 7→ coker(fU ) := S (U)/im(fU ).

Note that a morphism of presheaves f : R −→ S is said to be injective (resp. surjective, resp. an iso-

morphism) if fU : R(U) −→ S (U) is injective (resp. surjective, resp. an isomorphism) for every open set

U ⊂ X.

Definition 2.2.4. A sheaf R on a topological spaceX is a presheaf which satisfies the following two additional

constraints. Let U be any open set in X, with (Uλ)λ∈Λ an open cover of U .

(i) (Uniqueness). If f ∈ R(U) satisfies resUUλ(f) = 0 for all λ ∈ Λ. Then f = 0 in R(U).

(ii) (Existence). If we are given a collection fλ ∈ R(Uλ) such that for all pairs µ, λ ∈ Λ,

resUλUλ∩Uµ(fλ) = res
Uµ
Uλ∩Uµ(fµ).

Then there exists some f ∈ R(U) such that resUUλ(f) = fλ for all λ ∈ Λ.

Remark 2.2.5. Note that conditions (i) and (ii) are equivalent to saying that for any open set U ⊆ X, and

any open cover U := (Uλ)λ∈Λ of U , stable under finite intersections, the morphism

R(U) −→ lim
←−
λ

R(Uλ)

is an isomorphism.

Example 2.2.6. Let X be a complex manifold. The most important example of a sheaf, for our purposes at

least, is the sheaf OG of analytic functions on a domain G ⊆ X. Other examples of presheaves and sheaves

that will appear in this exposition include:

· the sheaf CX of continuous functions which assigns to each open subset U ⊆ X, the ring

CX(U) := {f : U −→ C : f is a continuous function} .

· the sheaf C∞X of smooth functions which assigns to each open subset U ⊆ X, the ring

C∞X (U) := {f : U −→ C : f is a smooth function} .

· the constant presheaf which is denoted by R which assigns to each open set U ⊆ X simply the ring

R. If R is the zero ring, we refer to the constant presheaf as the zero presheaf.
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Notational Remark 2.2.7. Note that to simplify notation, in many instances we will O in place of OG.

Moreover, since the stalk of O at p ∈ G is the ring of convergent power series C{z} centred at p, we often use

the notation Op and C{z} interchangably without explicit mention.

Definition 2.2.8. Let R and S be two sheaves on a topological space X. A morphism of sheaves f : R −→
S is defined to be a morphism of underlying presheaves.

Similarly, a morphism of sheaves f : R −→ S is said to be injective (resp. surjective, resp. an isomorphism)

if the morphism of underlying presheaves is injective (resp. surjective, resp. an isomorphism).

Further, if f : R −→ S is a morphism of sheaves, we define the presheaf kernel and the presheaf cokernel by

the same formulas as those exhibited in Definition 2.2.3.

Proposition 2.2.9. Let R and S be two sheaves of abelian groups over a topological space X. Let f :

R −→ S be a morphism of sheaves. Then f is an isomorphism of sheaves if and only if the induced map on

stalks fx : Rx −→ Sx is an isomorphism of abelian groups for each x ∈ X.

Proof. It is clear that if f : R −→ S is an isomorphism of sheaves, then fx : Rx −→ Sx is an

isomorphism for each x ∈ X. We therefore concern ourselves only with the converse statement. Suppose that

fx : Rx −→ Sx is an isomorphism for each x ∈ X. For each open set U ⊆ X, let fU : R(U) −→ S (U) denote

the associated map on sections. It suffices to show that fU is an isomorphism for each open set U ⊆ X. To

this end, we will first show that fU is injective. Suppose that the section s ∈ R(U) lies in the kernel of fU .

Denote by sp the stalk of s at p ∈ X. Then for each x ∈ U ,

(fU (s))x = fx(sx) = 0 in Sx.

Since fx is injective, sx = 0 in Rx for each x ∈ U . In other words, there is an open neighbourhood Vx ⊂ U of

x such that s|Vx = 0. Since we may cover U by the neighbourhoods (Vx)x∈U , (i) of Definition 2.2.4 implies

that s = 0 in U . This proves that fU is injective.

To see that fU is surjective, let t ∈ S (U), and for each x ∈ U , denote by tx the germ of t at x in Sx. Let

sx ∈ Rx denote the stalk of a section s ∈ R(Vx), where Vx ⊂ U is a neighbourhood of x, such that fx(sx) = tx.

In other words, the germs of fU (s) and t, at x, coincide. We choose Vx sufficiently small such that fU (s)|Vx
and t|Vx represent the same element in S (Vx). As we did before, we cover U by the open neighbourhoods Vx.

On each of these we have s(x) ∈ R(Vx). Now for two points z, w ∈ X, s(z)|Vz∩Vw and s(w)|Vz∩Vw are both

mapped to t|Vz∩Vw by f |Vz∩Vw . We have shown that for every open set U ⊆ X, fU is injective, so

s(z)|Vz∩Vw = s(w)|Vz∩Vw .

Then by (ii) of Definition 2.2.4, we obtain a section s ∈ R(U) such that s|Vz = s(z). In particular, this shows

that fU is surjective and completes the proof. �

Proposition 2.2.10. Let S be a presheaf on a topological space X. We may associate to S a sheaf S such

that, for any sheaf R on X, and any morphism of presheaves f : S −→ R, there exists a unique morphism

of sheaves h : S → R such that f = h ◦ g, where g : S −→ S .

Proof. The construction of S is obvious. Indeed, given any open set U ⊂ X, we set S (U) to be the set

of all functions f : U −→
⋃
x∈U Sx such that

(i) s(x) ∈ Sx for all x ∈ U , and
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(ii) for every point x ∈ U , there is an open neighbourhood V ⊂ U of x, and an element t ∈ S (V ) such

that the germ of t at y coincides with s(y) for all y ∈ V .

The properties of S , and the uniqueness of h, in the statement of the proposition are now immediate. �

To break away from all this abstract nonsense, we consider the following concrete example.

Example 2.2.11. Let S denote the presheaf on R which, on any open set U ⊆ R not containing both 0 and

1, coincides with the sheaf CR of continuous functions. For an open set U containing 0 and 1 however, S

assigns to U the set of continuous functions f : U → R such that f(0) = f(1). For an open set U ⊆ R such

that 0 ∈ U , but 1 6∈ U , then S |U coincides with the sheaf CR of continuous functions on R. The same is of

course true if we take U ⊂ R such that 1 ∈ U , but 0 6∈ U . Hence at least locally, this presheaf S is simply

CR. Therefore, as mentioned above, to form the sheaf S we include enough sections which will allow us to

glue local sections and remove the non-zero global sections which are locally zero. It is clear that the resulting

sheaf which we obtain is S = CR.

Proposition 2.2.12. Let f : R −→ S be a morphism of sheaves over X. The presheaf kernel K er(f) is a

sheaf.

Proof. We need to show that K er(f) satisfies conditions (i) and (ii) of Definition 2.2.4. To this end,

let U ⊆ X be an open set, covered by the open sets (Uλ)λ∈Λ. We first show condition (i) of Definition 2.2.4.

Suppose that s ∈ K er(f)(U) is such that s|Uλ = 0 for all λ ∈ Λ. Since K er(f)(U) ⊆ R(U), we may identify

s as an element of R(U) which satisfies s|Uλ = 0 for all λ ∈ Λ. Since R is a sheaf, R satisfies (i) of Definition

2.2.4, and therefore s = 0 in R(U). Then fU (s) = fU (0) = 0 shows that s ∈ ker(f)(U) and since s = 0 in

R(U), we conclude that s = 0 in K er(fU ).

To establish condition (ii) of Definition 2.2.4, suppose that we have local sections sλ ∈ K er(f)(Uλ) such that

sλ|Uλ∩Uµ = sµ|Uλ∩Uµ , ∀λ, µ ∈ Λ.

Then these local sections, viewed as sections of R(U), can be glued together to form a section s ∈ R(U) which

satisfies s|Uλ = sλ. Since K er(f)(U) ⊆ R(U), we identify s with an element of the subgroup K er(f)(U),

and this completes the proof. �

We note that it is not true in general that C oker(f) is a sheaf. Note however, that for all x ∈ X,

(K er(f))x = ker(fx), and (C oker(f))x = C oker(fx).

In particular, we may equivalently define a morphism of sheaves f : R −→ S to be injective (resp. surjective,

resp. an isomorphism) if and only fx : Rx −→ Sx is injective (resp. surjective, resp. an isomorphism) for

each x ∈ X.

Definition 2.2.13. Let (S q)q∈N denote a collection of sheaves on a topological space X. A sequence of

morphisms of sheaves

S 1 α1

−−−−→ S 2 α2

−−−−→ S 3 −→ · · ·
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is said to be exact if and only ker(αq+1
x ) = im(αqx) for each q ≥ 1, and all x ∈ X. Here, αqx denotes the

associated morphism at the level of stalks, i.e., αqx : S q
x −→ S q+1

x .

Many of the notions familiar to us for abelian groups can be generalised to sheaves of abelian groups. We

mention some of these constructions in the following definition; details of the constructions are omitted. For

details, see, e.g., [28, Chapter 2.1], [26, Chapter IV.A], [37, Chapter 3], [19, Chapter A].

Definition 2.2.14. Let R and S be two sheaves of abelian groups on a fixed topological space X.

(i) We say that S is a subsheaf of R, and write S ⊆ R, if Sx is a subgroup of Rx for each x ∈ X.

(ii) We say that J is an ideal sheaf if R is Jx is an ideal in Rx for each x ∈ X.

(iii) The restriction of S to an open set U ⊆ X, denoted by SU , is the sheaf associated to the presheaf

V 7→ S (V ), where V is an open subset of U .

(iv) The direct sum of R and S , written R⊕S , is the sheaf associated to the presheaf U 7→ R(U)⊕S (U).

(v) If S is a subsheaf of R, the quotient sheaf R/S is the sheaf associated to the presheaf U 7→
R(U)/S (U).

Remark 2.2.15. We offer some further remarks on the definition of the quotient sheaf; we maintain the above

notation. The formula U 7→ R(U)/S (U) will not in general define a sheaf, only a presheaf. Therefore, to

obtain a sheaf, we must sheafify. It will be useful to elaborate a little on the sheafification process. Indeed, if

we cover X by the open sets (Uλ)λ∈Λ, a local section of the quotient presheaf is an element fλ ∈ R(Uλ)/S (Uλ).

To form a sheaf, we need to be able to glue these local sections and obtain a global section. More precisely,

we require that for any two local sections fλ ∈ R(Uλ)/S (Uλ), and fµ ∈ R(Uµ)/S (Uµ),

fλ|Uλ∩Uµ − fµ|Uλ∩Uµ = 0

in R(Uλ ∩ Uµ)/S (Uλ ∩ Uµ). This may be equivalently expressed as fλ|Uλ∩Uµ − fµ|Uλ∩Uµ ∈ S (Uλ ∩ Uµ).

Definition 2.2.16. A ringed space is a pair (X,R) consisting of a topological space X and a sheaf of rings R

over X. If each stalk of R is a local ring, we call (X,R) a locally ringed space. If each stalk Rx is an analytic

C–algebra, then (X,R) is said to be a C–analytic ringed space. The sheaf R associated to the ringed space

(X,R) is referred to as the structure sheaf of X. We will often write X in place of (X,R).

Definition 2.2.17. Let (X,R) and (Y,S ) be two ringed spaces. A morphism of ringed spaces is a pair

(f, f [) : (X,R) −→ (Y,S ) such that

(i) f : X −→ Y is continuous.

(ii) for every open set U ⊂ V , there is an induced ring homomorphism f [U : S (U) −→ R(f−1(U)).

(iii) the maps f [ must be compatible with the restriction maps of R and S . That is, for any inclusion

of open sets V ⊆ U ⊆ Y , the diagram
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S (U) R(f−1(U))

S (V ) R(f−1(V ))

resUV

f [U

res
f−1(U)
f−1(V )

f [V

commutes.

Definition 2.2.18. Let (X,R) and (Y,S ) be two locally ringed spaces. A morphism of locally ringed spaces

is a morphism of ringed spaces such that, for each p ∈ X, the induced map on stalks f [p : Sf(p) −→ Rp, is a

morphism of local rings, i.e., the maximal ideal in Rp contains the image of the maximal ideal in Sf(p) under

f [p. A morphism of C–analytic ringed spaces is a morphism of ringed spaces such that, for each p ∈ X, the

induced map on stalks, f [p : Sf(p) −→ Rp, is a morphism of analytic C–algebras.

§2.3. Coherence Theory of Sheaves – The Statements

The sheaves discussed in the previous section allow us to pass from local phenomena to global phenomena.

The coherent sheaves discussed in this section allow us to pass from punctual phenomena2 to local phenomena.

For example, suppose that S ′ −→ S −→ S ′′ is a sequence of coherent sheaves (whatever this means) on a

topological space X. If for some point x ∈ X, the sequence S ′
x −→ Sx −→ S ′′

x is exact, then for every point

in a sufficiently small neighbourhood of x, the sequence remains exact.

Definition 2.3.1. Let R be a sheaf of rings and S a sheaf of abelian groups on a topological space X. We

say that S is a sheaf of R–modules (or an R–module) if there is a morphism of sheaves R⊕S −→ S which

descends to a morphism on stalks Rx ⊕Sx −→ Sx, endowing Sx with the structure of an Rx–module for

each x ∈ X.

Definition 2.3.2. Let S and T be two sheaves of R–modules over a fixed topological space X. A morphism

of sheaves of R–modules (or an R–morphism) is a morphism of sheaves f : S −→ T such that fx : Sx −→ Tx

is a morphism of Rx–modules for each x ∈ X. If the sheaf of rings is taken to be the sheaf O of analytic

functions on a domain in Cn, or more generally, on a complex analytic space (whatever these are), then a

sheaf S of O–modules is called an analytic sheaf.

Definition 2.3.3. Let R be a sheaf of rings, and S , T two sheaves of R–modules over a topological space

X. We define

(i) the Hom sheaf, denoted by H omR( · , · ), to be the sheaf which assigns to each open set U ⊂ X the

ring U 7→ Hom(SU ,TU ).

(ii) the dual sheaf of S , denoted by S ∗, to be the sheaf U 7→ S ∗(U) := H omRU (SU ,RU ).

(iii) the tensor product of S and T over R to be the sheaf associated to the presheaf U 7→ S (U)⊗R(U)

T (U).

For the proof of the fact that H omR( · , · ) defines a sheaf and not just a presheaf, see, e.g., [48, p. 176]).

2i.e., phenomena that occur at the level of points.
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Definition 2.3.4. Let R be a sheaf of rings on a topological space X. Let S and T be two sheaves of

R–modules with µ : S −→ T a morphism of R–modules. A syzygy for µ is a morphism of R–modules

λ : Rp −→ S such that the sequence

Rp λ−−−→ S
µ−−−→ T

is an exact sequence. A chain of syzygies for an R–module S is an exact sequence of R–modules

· · · −→ Rp1 λ1−−−−→ Rp λ−−−→ S −→ 0,

where each λj is a morphism of R–modules.

Definition 2.3.5. We say that a chain of syzygies for an analytic sheaf R terminates at the kth step if the

sequence

0 −→ Opk λk−−−−→ Opk−1 −→ · · · −→ Op1 λ1−−−−→ Op λ−−−→ R −→ 0 (14)

is an exact sequence of analytic sheaves, and each λj is a morphism of analytic sheaves.

The following theorem tells us that if S is an analytic sheaf on a domain G ⊆ Cn then for any point p ∈ G,

there is an open neighbourhood of p, over which S admits a terminating chain of syzygies.

Theorem 2.3.6. (Hilbert’s syzygy theorem for analytic sheaves). Let U be an open neighbourhood of the

origin in Cn, and let µ1 : Op1U −→ OqU be a morphism of analytic sheaves. Then there exists an open

neighbourhood V ⊂ U of the origin, over which, we have a terminating chain of syzygies of the form

0 −→ OpnV
µn−−−−→ · · · µ2−−−−→ Op1V

µ1−−−−→ OqV .

Definition 2.3.7. Fix a topological space X and let R be a sheaf of rings on X. A sheaf of R–modules S

is said to be of finite type if it is locally the image of a finitely generated free R–module. That is, for each

x ∈ X, there is an open neighbourhood U ⊆ X of x and an exact sequence of the form Rp
U −→ SU −→ 0, for

some p ∈ N.

Remark 2.3.8. Note that this may be equivalently expressed as every stalk Sx being a finitely generated

Rx–module with the generators depending continuously on x.

Definition 2.3.9. A sheaf of R–modules S of finite type is said to be a coherent R–module if for any open

set U ⊆ X, and any finite set of sections s1, ..., sp ∈ S (U), the sheaf of relations Rel(s1, ..., sp) over U is of

finite type. Moreover, by R being a coherent sheaf of rings we mean that R is a coherent sheaf of R–modules.

In more detail, fix a neighbourhood U of a point x ∈ X. Given finitely many sections s1, ..., sp ∈ S (U), we

define a morphism of sheaves σU : Rp
U −→ SU ,

σU ((λ1)x, ..., (λp)x) :=

p∑
k=1

(λk)x(sk)x, x ∈ U.

If S is a sheaf of finite type, for each point x ∈ X, there exists a neighbourhood U of x such that σU is

surjective. The kernel of this morphism of sheaves is a sheaf by Proposition 2.2.12, and we refer to this sheaf
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Rel(s1, ..., sp) as the sheaf of relations.

We offer a brief survey of some useful results on coherent sheaves.

Theorem 2.3.10. ([37, p. 140], [19, p. 11]). Let R be a sheaf of rings on a topological space X, and let

0 −→ S ′ −→ S −→ S ′′ −→ 0

be an exact sequence of R–modules. If any two of the sheaves in the above sequence are coherent, the third

is also coherent.

Proposition 2.3.11. ([37, p. 141], [19, p. 12]).

(i) Let ϕ : S → S ′ be an R–morphism of coherent sheaves S and S ′. Then K er(ϕ), I m(ϕ), and

C oker(ϕ) are coherent sheaves of R–modules.

(ii) A subsheaf J of a coherent sheaf is coherent if and only if J is a sheaf of finite type.

(iii) The direct sum of finitely many coherent sheaves is coherent.

(iv) If J1 and J2 are two coherent ideal R–sheaves, then J1 ·J2 is also coherent.

(v) Let R be a coherent sheaf of rings. Then the sheaf of R–modules S is coherent if and only if, for

every x ∈ X, there exists a neighbourhood U of x, with positive integers p, q, and an exact sequence

Rq
U −→ Rp

U −→ SU −→ 0.

The following definition will be important to our discussion of complex analytic spaces.

Definition 2.3.12. Let R be a sheaf of rings on a topological space X. We let N := N (R) denote the

nilradical sheaf (of R). That is, N is the sheaf whose stalk Np is the nilradical of Rp, i.e.,

N (R) :=
⋃
p∈X

N (Rp) ⊂ R.

The quotient sheaf Red(R) := R/N is called the reduction of R.

Theorem 2.3.13. ([19, p. 12]). Let R and J be coherent sheaf of R–modules, and S a sheaf of R/J –

modules. Then S is coherent as a sheaf of R/J –modules if and only if it is coherent as a sheaf of R–modules.

In particular,

(i) R/J is a coherent sheaf of rings.

(ii) if R and the nilradical N of R are coherent, then red R = R/N is a coherent sheaf.

§2.4. Complex Analytic Spaces

We now have the necessary machinery required to introduce the formidable complex analytic spaces. In a crude

sense, they are complex manifolds which admit singularities. The construction is analogous to Grothendieck’s

notion of a scheme in algebraic geometry [23]. We offer three equivalent definitions of (reduced) complex

analytic spaces, following the treatment given in [24]. We begin with a discussion of the local picture of these

complex analytic spaces.
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We assume throughout this section unless otherwise stated, that all topological spaces are Hausdorff and

second countable.

Definition 2.4.1. Let G ⊆ Cn be a domain. An analytic set (or analytic variety) in G is a set A which is

locally given by the common zero set of a finite number of analytic functions. That is, for any point x ∈ G,

there exists an open neighbourhood U ⊂ G and a finite number of analytic functions f1, ..., fk ∈ O(U) such

that

A ∩ U = V (f1, ..., fk) ∩ U = {z ∈ U : fj(z) = 0, ∀ 1 ≤ j ≤ k}.

Remark 2.4.2. Note that any domain G ⊆ Cn can be realised as the analytic set given by the vanishing of

the function f : G −→ C which is identically zero.

Definition 2.4.3. Let A and B be analytic sets in the respective domains G ⊆ Cn and D ⊆ Cm. We say that

f : A −→ B is a morphism (or analytic sets) if f is the restriction to A of a holomorphic map f̃ : U −→ V ,

where U and V are open neighbourhoods of A and B respectively.

We denote by (A,OA) the C–analytic ringed space whose underlying topological space is A and whose structure

sheaf is the sheaf of morphisms f : A −→ C.

Definition 2.4.4. Let X be a topological space. An analytic atlas (or holomorphic atlas) is a collection

(Uλ, ϕλ)λ∈Λ, where (Uλ)λ∈Λ is an open cover of X, and for each λ ∈ Λ the map ϕλ : Uλ −→ Aλ is a

homeomorphism onto a locally closed analytic set Aλ ⊂ Cnλ . Moreover, for each pair µ, λ ∈ Λ, the transition

maps

ϕµ ◦ ϕ−1
λ : ϕλ(Uλ ∩ Uµ) −→ ϕµ(Uλ ∩ Uµ)

are morphisms of analytic sets. Each (Uλ, ϕλ) is called an analytic chart. Two analytic atlases on X are said

to be equivalent if their union is again an analytic atlas for X.

Definition 2.4.5. A (reduced) complex analytic space is a (Hausdorff, second countable) topological space X

together with an equivalence class of analytic atlases.

Definition 2.4.6. Let X and Y be two reduced complex analytic spaces. A map f : X −→ Y is called a

morphism of reduced complex analytic spaces (or holomorphic map) if for every analytic chart (Uλ, ϕλ) of X,

and every chart (Vµ, ψµ) of Y , such that f(Uλ) ⊂ Vµ, the map ψµ ◦ f ◦ ϕ−1
λ is a morphism of analytic sets. If

f is bijective with inverse f−1 : Y −→ X also a morphism of reduced complex analytic spaces, we say that f

is an isomorphism (of reduced complex analytic spaces) (or biholomorphic map).

Remark 2.4.7. Let us mention explicitly that by an analytic function on a reduced complex analytic space,

we mean a morphism f : X −→ C, with C viewed as a complex analytic space.

We offer the following useful alternative definition.
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Definition 2.4.8. A (reduced) complex analytic space is a C–analytic ringed space (X,OX), where X is a

(Hausdorff, second countable) topological space and OX is a subsheaf of CX which satisfies the following

condition: For each point x ∈ X, there is an open neighbourhood U ⊆ X of x such that (U,OX |U ) is

isomorphic (as a C–analytic ringed space) to (A,OA), where A is a locally closed analytic set in some Cn. We

call (U,OX |U ) a local model of X.

Definition 2.4.9. A morphism between reduced complex analytic spaces (X,OX) and (Y,OY ) is a pair (f, f [),

where f : X −→ Y is continuous, and f [ : OY −→ f∗OX is a morphism of sheaves of analytic C–algebras, i.e.,

for each p ∈ X, the map f [p : OY,f(p) −→ OX,p is a morphism of local C–algebras.

The first definition of a reduced complex analytic space has the advantage that there is a very transparent

parallel with complex manifolds. As we stated previously, however, the second definition permits us to

generalise to non-reduced complex analytic spaces. To show that these two definitions are equivalent, we need

the following lemma.

Lemma 2.4.10. Let A, B be analytic subsets of some open sets V ⊆ Cn and W ⊆ Cm respectively. Let

(A,OA) and (B,OB) denote the associated C–analytic ringed spaces. If (f, f [) : (A,OA) −→ (B,OB) is

a morphism of C–analytic ringed spaces, the continuous map f : A −→ B uniquely determines the map

f [ : OB −→ f∗OA.

Proof. Let (z1, ..., zn) and (w1, ..., wm) denote the coordinate functions on Cn and Cm respectively. For

each p ∈ A, the map f [p is a morphism of analytic C–algebras, so the diagram

OB,f(p) OA,p

C ∼= OB,f(p)/mB,f(p) OA,p/mA,p
∼= C

f [p

IdC

commutes. From this diagram, we see that

(f [(wk))p =
[
f [p(wk)p

]
modmA,p

=
[
(wk)f(p)

]
modmB,f(p)

= fk(p).

By Proposition 1.2.33 f [ is uniquely determined by the images f [(wk), k = 1, ...,m, and since these images

are determined by f , this completes the proof. �

Theorem 2.4.11. The definition of a reduced complex analytic space given in Definition 2.4.5 and the

definition given in Definition 2.4.8 are equivalent.

Proof. Let f : X −→ Y be a morphism of reduced complex analytic spaces (in the sense of Definition

2.4.6). For any point p ∈ X, using analytic charts, the map f [p : OY,f(p) −→ OX,p is a morphism of analytic

C–algebras given by OY,f(p) 3 g 7→ g ◦ f ∈ OX,p. Conversely, let (f, f [) : (X,OX) −→ (Y,OY ) be a morphism

of reduced complex analytic spaces (in the sense of Definition 2.4.9). We cover X by local models (Uλ, ϕλ),

λ ∈ Λ, where (ϕλ, ϕ
[
λ) : (Uλ,OX |Uλ) −→ (Aλ,OAλ) are isomorphisms of C–analytic ringed spaces. We need
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to show that the transition maps ϕµ ◦ϕ−1
λ are morphisms of analytic sets. By Lemma 2.4.10 the components

of ϕµ ◦ ϕλ are given by (ϕ−1
µ )[ ◦ ϕ[λ(zk) for each k ∈ {1, ..., nλ}. Hence, these maps are holomorphic, and

(Uλ, ϕλ)λ∈Λ is an analytic atlas for X. It can be easily shown that the equivalence class of this atlas is

independent of the chosen covering by local models. �

We now proceed with the most general definition of a complex analytic space (possibly non-reduced).

Let G ⊆ Cn be a domain, and J ⊂ OG an ideal sheaf of finite type. That is, given any point p ∈ G, there is

a neighbourhood U of p and a finite number of analytic functions f1, ..., f` ∈ O(U) which generate JU . Let

V (J ) := {p ∈ G : Jp 6= Op} = {p ∈ G : Op/Jp 6= 0}. We note that the set V (J ) is an analytic set. Indeed,

for a point p ∈ G, Jp 6= Op if and only if f(p) = 0 for every f ∈ Jp. Since J is of finite type, there is a

neighbourhood U of p such that

U ∩ V (J ) = V (f1, ..., f`) = {p ∈ U : fk(p) = 0, 1 ≤ k ≤ `} .

We offer the definition of local model which fits into this new framework.

Definition 2.4.12. A local model for a complex analytic space (X,OX) is a C–analytic ringed space (V (J ), (O/J )|V (J )),

where J ⊂ O is an ideal sheaf of finite type.

Note that if A is an analytic set in some domain G ⊆ Cn, then each morphism f : A −→ C locally lifts to a

holomorphic function in some open set U ⊂ G. Any two holomorphic functions f , g on A∩U define the same

function if and only if (f − g)(p) = 0 for all p ∈ A ∩ U . Therefore, OA ∼= (OG/J (A))|A, where J (A) is the

full ideal sheaf of A, i.e., the sheaf which assigns to each open set U , the ideal

J (A)(U) := {f ∈ OX(U) : A ∩ U ⊂ V (f)} .

Definition 2.4.13. A complex analytic space is a C–analytic ringed space (X,OX), where X is a Hausdorff,

second countable topological space and, for every point x ∈ X there is an open neighbourhood U ⊆ X of x

such that (U,OX |U ) is isomorphic (as a C–analytic ringed space) to a local model (V (J ), (O/J )|V (J )). A

morphism of complex analytic spaces (or a holomorphic map) is a morphism of C–analytic ringed spaces.

For any point p ∈ X, we observe that

OX,p ∼= OCn,0/J0
∼= C{z}/〈f1, ..., f`〉.

We refer to the functions f1, ..., f` as the local coordinates of X at p.

Remark 2.4.14. What distinguishes a non-reduced complex analytic space from a reduced complex analytic

space is that if X is non-reduced, the structure sheaf OX is no longer a subsheaf of the sheaf CX of continuous

functions. Indeed, the structure sheaf OX may have nilpotents. A particularly treacherous consequence of

this fact is that the sections of OX are no longer determined by their values at points. It is therefore perhaps

misleading to refer to sections of OX as functions. Nevertheless, this language is maintained and should not

cause confusion.
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Example 2.4.15. The prototypical example of a non-reduced complex analytic space is a fat point of length

two3. The underlying topological space of a fat point consists only of a single point X = {pt}, and so the

structure sheaf OX is determined uniquely by the stalk at this point. If we take OX,pt to be the non-reduced

ring4 C[z]/〈z2〉, then z ∈ OX,pt, but z2 = 0 in OX,pt.

Definition 2.4.16. Let (X,OX) be a complex analytic space and NX ⊂ OX the nilradical sheaf. We define

the reduction of X to be the complex analytic space (Xred, redOX), where Xred := X and redOX := OX/NX .

If U ⊆ X is an open set, and f ∈ OX(U), we define the reduction of f to be the continuous function

red(f) : U −→ C, U 3 p 7→ f(p) := evalp(fp). The map evalp(fp) is the evaluation map evalp := projC :

OX,p = C⊕mp −→ C, and fp is the stalk of f at p as usual.

To see that red(f) is continuous, observe that locally, we may assume that (X,OX) = (V (J ), (OV /J )|V (J )) is

a local model, where V ⊂ Cm is an open set containing V (J ). By shrinking V if necessary, we may lift red(f)

to a section f̃ ∈ OCn(V ), i.e., lift red(f) to a holomorphic function f̃ : V −→ C such that red(f)(p) = f̃(p)

for all p ∈ V . Since f̃ is holomorphic, it is, in particular, a continuous function, and so red(f) is continuous,

as claimed.

Triviality 2.4.17. It is clear that a complex analytic space is reduced if and only if it coincides with its

reduction.

We mention the following important (non-trivial) theorem due to K. Oka [52].

Theorem 2.4.18. (Oka’s Coherence Theorem). The structure sheaf OX of a complex analytic space (X,OX)

is a coherent sheaf.

Definition 2.4.19. Let X := (X,OX) be a complex analytic space. We say that X is a Stein space if

(i) X is holomorphically convex.

(ii) X is holomorphically separable.

In more detail, we say that X is holomorphically convex if for every compact set K ⊂ X, the holomorphically

convex hull

K̂ =
⋂

f∈OX(X)

{
x ∈ X : |f(x)| ≤ max

z∈K
|f(z)|

}
is compact in X.

Topological Remarks. We conclude this section with some remarks on the topology of complex analytic

spaces. We first consider the following definition that appears throughout many of the proofs in this thesis.

3This terminology is what is used in [24]. In [28, p. 265], the terminology dual numbers is used.
4Recall that a ring R is said to be reduced if it has no nilpotent elements. If R is not reduced, we say that it is non-reduced.
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Definition 2.4.20. Let X be a topological space and (Kν)ν≥1 a sequence of compact sets in X. We say that

(Kν)ν≥1 is an exhaustion of X by compact sets if

(i) K̊ν ⊂ Kν+1 for all ν ≥ 1.

(ii) X =
⋃
ν≥1Kν .

Lemma 2.4.21. Let X be a topological space that is locally compact5 and second countable, then X admits

an exhaustion by compact sets.

Proof. Let B := (Bµ)µ∈N be a countable base of open sets forX. For each λ ∈ N, we let Uλ :=
⋃

1≤µ≤λBµ.

We proceed inductively to construct an exhaustion (Kν)ν∈N of X by compact sets. To this end, set K1 = B1,

and suppose that K1, ...,Kν have been chosen such that Kµ−1 ⊂ K̊µ for each 2 ≤ µ ≤ ν. Since X is locally

compact, the closure Bµ of each Bµ is a compact set, and in particular, Uλ is compact for each λ ∈ N. We

then choose λ to be the smallest positive integer such that Kν ⊂ Uλ, then Kν+1 := Uλ is compact, and

Kν ⊂ K̊ν+1, as required. �

Proposition 2.4.22. Every complex analytic space X is locally compact and second-countable. In particular,

every complex analytic space is paracompact and admits an exhaustion by compact sets.

Proof. We have assumed that all complex analytic spaces are second countable. To see that X is locally

compact, consider that for any point p ∈ X, we have a C–analytic ringed space (Uλ,OUλ) such that p ∈ Uλ
and (Uλ,OUλ) is isomorphic (as a C–analytic ringed space) to a local model

(
V (Jλ), (OG/Jλ)|V (Jλ)

)
. Since

V (Jλ) ⊂ Cnλ , and Cnλ is locally compact, X is locally compact as claimed. Paracompactness is therefore

immediate, and by applying Lemma 2.4.21, we see that every complex analytic space admits an exhaustion

by compact sets. �

The following trivial fact is what makes exhaustions by compact sets very useful to us.

Triviality 2.4.23. Let X := (X,OX) be a complex analytic space, and let (Kν)ν≥1 be an exhaustion of X

by compact sets. Let S be a sheaf on X, and sν ∈ S (Kν) a sequence of sections such that, for each ν ≥ 1,

sν+1|Kν = sν . Then there exists a unique global section s ∈ S (X) such that, for each ν ≥ 1, s|Kν = sν .

5By a topological space X being locally compact, we mean that X is Hausdorff and every point x ∈ X has a neighbourhood

which is compact.



CHAPTER 3

Sheaf Cohomology and Cartan’s Theorem B

§3.1. Sheaf Cohomology – The Statements

The purpose of this section is to survey some results on sheaf cohomology that will be essential to the proof

of Cartan’s theorem B. Readers familiar with sheaf cohomology may wish to skip this section and refer back

only when necessary. Throughout our discussion of sheaf cohomology via flabby and soft sheaves and Ĉech

cohomology, X will denote a topological space, and R will be a sheaf of rings on X.

Sheaf Cohomology Via Flabby and Soft Sheaves. Suppose that we have an exact sequence of sheaves

of R–modules

0 −→ S
ı−−−→ S 0 d0−−−−→ S 1 d1−−−−→ · · ·

dq−1−−−−−→ S q −→ · · · ,

over X. We have an induced sequence at the level of global sections

0 −→ S (X)
ı∗−−−→ S 0(X)

d∗0−−−−→ S 1(X)
d∗1−−−−→ · · ·

d∗q−1−−−−−→ S q(X) −→ · · · , (15)

which may fail to be exact. Since d∗q ◦d∗q−1 = 0 for all q ≥ 1 however, (15) forms a complex of R(X)–modules.

The failure of an exact sequence of sheaves to induce an exact sequence at the level of global sections is

measured by sheaf cohomology (whatever this is). The following class of sheaves will be used to compute the

sheaf cohomology groups (see Definition 3.1.7).

Notational Remark 3.1.1. In the interests of clarity, we will write dq for the coboundary map at the level

of global sections in place of d∗q .

Definition 3.1.2. A sheaf of R–modules S on X is said to be flabby (or flasque) if for every open set U ⊆ X,

the restriction map resXU : S (X) −→ S (U) is surjective.

Lemma 3.1.3. ([19, p. 26]) Let

0 S ′ S S ′′ 0

be an exact sequence of sheaves of R–modules on X. If S ′ is flabby, then the sequence

0 S ′(X) S (X) S ′′(X) 0

is exact. Moreover, if S ′ and S are flabby sheaves, then S ′′ is also flabby.

We may strengthen Lemma 3.1.3 to establish the following result:

36
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Proposition 3.1.4. ([19, p. 26]). Let

0 −→ S −→ S 0 −→ S 1 −→ · · · −→ S q −→ · · ·

be an exact sequence of sheaves of R–modules over X. If the sheaves S , S q, q ≥ 0, are all flabby, then the

induced map at the level of global sections

0 −→ S (X) −→ S 0(X) −→ S 1(X) −→ · · · −→ S q(X) −→ · · ·

is exact.

Definition 3.1.5. Let S be a sheaf of R–modules on X. We may associate to S a flabby sheaf F (S )

called the flabby sheaf associated to S . This sheaf is defined by the assignment

U 7−→ F (S )(U) :=

s : U −→
⋃
p∈U

Sp : s(p) ∈ Sp, ∀p ∈ U

 ,

with the restriction maps defined in the obvious way.

There is a natural inclusion ı : S −→ F (S ) and for any morphism ϕ : S −→ T , there is an induced map

F (ϕ) : F (S ) −→ F (T ). The assignment of S  F (S ) defines an exact functor called the flabby functor.

Construction 3.1.6. Let S be a sheaf of R–modules on X. We construct an exact sequence of R–modules

for S in the following way:

(i) Set S 0 := F (S ), and let ı : S −→ S 0 denote the inclusion map. We represent this by an exact

sequence

0 −→ S −→ S 0.

(ii) Set S 1 := F (S 0/ı(S )), and define d0 : S 0 −→ S 1 to be the composition of the quotient map

S 0 −→ S 0/ı(S ) and the inclusion map S 0/ı(S ) ↪→ S 1. We therefore have an exact sequence

0 −→ S −→ S 0 −→ S 1.

(iii) We iterate this process to obtain an exact sequence

0 −→ S
ı−−−→ S 0 d1−−−−→ S 1 d2−−−−→ S 2 −→ · · · ,

where S q := F (S q−1/I m(dq−1)) is flabby for each q ≥ 0, and the map dq : S q −→ S q+1

is given by the composition of the quotient S q −→ F (S q/I m(dq−1)) and the inclusion map

S q/I m(dq−1) ↪→ S q+1.

Therefore, associated to any sheaf S , we have an exact sequence of sheaves

0 −→ S
ı−−−→ S 0 d0−−−−→ S 1 d1−−−−→ S 2 −→ · · · (16)

which induces an exact sequence at the level of global sections

S (X)
ı−−−→ S 0(X)

d0−−−−→ S 1(X)
d1−−−−→ S 2(X) −→ · · · . (17)

The exact sequence (16) is called a flabby resolution of S , and is denoted by S •. Moreover, since dq ◦dq−1 = 0

for each q ≥ 1, the exact sequence (17) forms a complex of R(X)–modules which we denote by S •(X).
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Definition 3.1.7. Let S be a sheaf of R–modules on X. The sheaf cohomology groups of S are the

R(X)–modules

H0(X,S ) := S (X), and Hq(X,S ) :=
ker(dq)

im(dq−1)
, ∀q ≥ 1.

Theorem 3.1.8. ([19, p. 30]). Let 0 −→ S ′ −→ S −→ S ′′ −→ 0 be an exact sequence of sheaves of

R–modules over X. For each q ≥ 0 there is a connecting homomorphism δq : Hq(X,S ′′) −→ Hq+1(X,S ′)

such that the sequence

· · · −→ Hq(X,S ′) −→ Hq(X,S ) −→ Hq(X,S ′′)
δq−−−−→ Hq+1(X,S ′) −→ · · ·

is exact.

We have the following consequence of Proposition 3.1.4.

Proposition 3.1.9. ([19, p. 31]). Let S be a sheaf of R–modules on X. If S is flabby then Hq(X,S ) = 0

for all q ≥ 1.

Definition 3.1.10. An exact sequence of sheaves of R–modules

0 −→ S
ı−−−→ S 0 d0−−−−→ S 1 d1−−−−→ S 2 −→ · · ·

over X, is called an acyclic resolution if Hq(X,S k) = 0 for all k ≥ 0, and all q ≥ 1.

By Proposition 3.1.9 a resolution of flabby sheaves is an acyclic resolution.

Theorem 3.1.11. (The Formal de Rham Lemma, [19, p. 32]). Let

0 −→ S
ı−−−→ S 0 d0−−−−→ S 1 d1−−−−→ S 2 −→ · · ·

be an acyclic resolution of S , and let S •(X) denote the induced complex at the level of sections. Then for

all q ≥ 0, there exist natural R(X)–module isomorphisms

Hq(S •(X)) ∼= Hq(X,S ).

We consider the following class of sheaves which allow us to extend sections over open sets to global sections,

c.f., Definition 3.1.2.

Definition 3.1.12. A sheaf of R–modules S on X is said to be soft if for every closed set K ⊂ X, the

restriction map resXK : S (X) −→ S (K) is surjective.

We have the following analogues of Lemma 3.1.3 and Proposition 3.1.4:
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Lemma 3.1.13. ([19, p. 26]). Assume that X is paracompact, and suppose that

0 −→ S ′ −→ S −→ S ′′ −→ 0

is an exact sequence of sheaves of R–modules on X. If S ′ is soft, then the associated sequence at the level

of global sections

0 −→ S ′(X) −→ S (X) −→ S ′′(X) −→ 0

is exact. Moreover, if S ′ and S are soft, then S ′′ is also soft.

Proposition 3.1.14. ([19, p. 26]). Let

0 −→ S −→ S 0 d0−−−−→ S 1 d1−−−−→ · · ·
dq−1−−−−−→ S q dq−−−−→ · · ·

be an exact sequence of sheaves of R–modules on a paracompact topological space X. If every sheaf S , S q,

q ≥ 0, is soft, then the associated sequence at the level of global sections

S 0(X)
d0−−−−→ S 1(X)

d1−−−−→ · · ·
dq−1−−−−−→ S q(X)

dq−−−−→ · · ·

is exact.

The following important consequence of point-set topology is used in the proof of Proposition 3.1.4.

Proposition 3.1.15. Suppose that X is paracompact, then every flabby sheaf on X is soft. In particular,

since every complex analytic space is locally compact and, by assumption, second countable, every flabby

sheaf on a complex analytic space is soft.

Proposition 3.1.16. If S is a soft sheaf on X, then Hq(X,S ) = 0 for all q ≥ 1.

Definition 3.1.17. Assume that X be a paracompact, and suppose that S is a sheaf of R–modules on X.

An exact sequence of form

0 −→ S
ı−−−→ S 0 ı−−−→ S 1 d1−−−−→ S 2 d2−−−−→ · · · ,

where dq+1 ◦ dq = 0, and S q is soft for each q ≥ 0, is called a soft resolution of S .

Let S be a sheaf on a paracompact topological space X. By Proposition 3.1.15, every flabby resolution of

S is a soft resolution. Moreover, by Proposition 3.1.16 every soft resolution is acyclic. Hence, by Theorem

3.1.11, the cohomology groups of X computed via a resolution of flabby sheaves are naturally isomorphic to

the cohomology groups computed via a resolution of soft sheaves.

Ĉech Cohomology. Let U := (Uλ)λ∈Λ be an open cover of X. For any (k + 1)–tuple (λ0, ..., λk) ∈ Ik+1, for

some indexing set I, we set Uλ0···λk := Uλ0 ∩ · · · ∩ Uλk , and for each k ≥ 0, we define an R(X)–module:

Ck(U,S ) :=
∏

λ0<···<λk

S (Uλ0···λk).

An element α ∈ Ck(U,S ) is a function which assigns to each (k + 1)–tuple (λ0, ..., λk), an element αλ0···λk in

S (Uλ0···λk), we call α a k–cochain.
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We define a coboundary map dk : Ck(U,S ) −→ Ck+1(U,S ) by

(δkα)λ0···λk+1
:=

k+1∑
j=0

(−1)jα
λ0···λ̂j ···λk+1

∣∣∣∣∣
U
λ0···λ̂j ···λk+1

,

where λ̂j means that we omit λj . The reader may easily verify by direct computation that δk+1 ◦ δk = 0, and

C•(U,S ) := (Ck(U,S ), dk) is a complex of R(X)–modules.

Definition 3.1.18. The Ĉech cohomology modules of the sheaf S over X, with respect to the open cover U,

are defined by

Ĥ
0
(U,S ) := ker(d0), and Ĥ

q
(U,S ) :=

ker(dq)

im(dq−1)
, ∀q ≥ 1.

Now suppose that V := (Vµ)µ∈Λ′ is a refinement of U, we will write B < U to signify this, and let γ : Λ′ −→ Λ

be a refinement mapping. We have a natural R(X)–module homomorphism Ck(γ) : Ck(U,S ) −→ Ck(V,S ),

where Ck(αµ0···µk) := αγ(λ0)···γ(λk)|Vµ0···µk . These maps are compatible with the coboundary maps, and for

each k ≥ 0, we have induced maps hk(γ) : Ĥ
k
(U,S ) −→ Ĥ

k
(V,S ) on the cohomology modules. One

may show that these maps hk(γ) are independent of the choice of refinement map γ, and hence, we write

hk(U,V) := hk(γ). Then, for each k ≥ 0, we obtain a directed system (Ĥ
k
(U,S ), hk(U,B)), which is directed

with respect to the relation V < U.

Definition 3.1.19. The Ĉech cohomology groups of a sheaf S over X are given by the inductive limit

Ĥ
q
(X,S ) := lim

−→
Ĥ
q
(U,S ).

Proposition 3.1.20. ([19, p. 34]). The functors S  S (X) and S  Ĥ
0
(X,S ) are isomorphic.

Theorem 3.1.21. ([19, p. 34]). Assume that X is paracompact. For an exact sequence

0 −→ S ′ −→ S −→ S ′′ −→ 0

of R–modules, there is an induced exact sequence of Ĉech cohomology modules

· · · −→ Ĥ
q
(X,S ) −→ Ĥ

q
(X,S ′′)

δ̂q−−−−→ Ĥ
q+1

(X,S ′) −→ Ĥ
q+1

(X,S ) −→ · · · .

Definition 3.1.22. We say that an open cover U = (Uλ)λ∈Λ of X is acyclic with respect to the sheaf of

R–modules S if for all k ≥ 0, and q ≥ 1, we have Hq(Uλ0···λk ,S ) = 0.
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Theorem 3.1.23. (The Leray Theorem, [19, p. 43]). If U is a locally finite cover of X which is acyclic with

respect to the sheaf S , then there is a natural R(X)–isomorphism

Ĥ
q
(U,S ) ∼= Hq(X,S )

for all q ≥ 0.

Note that if S is a flabby sheaf, then every cover U of X is acyclic with respect to S . Hence, by Theorem

3.1.23, if U is locally finite, then Ĥ
q
(U,S ) = 0 for each q ≥ 1. In particular, for a complex analytic space,

which is paracompact, every open cover has a locally finite refinement. We, therefore, obtain the following

corollary.

Corollary 3.1.24. ([19, p. 43]). If S is a flabby sheaf on a complex analytic space (X,OX), then

Ĥ
q
(U,S ) = 0, for all q ≥ 1.

The above corollary is useful in establishing uniqueness results for cohomology theories. Let us mention a

very important theorem on the uniqueness of sheaf cohomology.

Theorem 3.1.25. ([19, p. 31]). For each q ≥ 0, let H̃q be a sequence of functors whose associated connecting

homomorphisms are denoted by δ̃q. Assume that these functors and homomorphisms satisfy:

(i) H̃0(X,S ) = S (X) for any sheaf of R–modules S .

(ii) For any exact sequence of sheaves of R–modules

0 −→ S ′ −→ S −→ S ′′ −→ 0,

the connecting homomorphisms δ̃q induce a long exact exact sequence

0 H̃0(X,S ) · · · H̃q(X,S ) H̃q(X,S ′′) H̃q+1(X,S ′) · · · .δ̃q

(iii) If S is a flabby sheaf of R–modules on X, then H̃q(X,S ) = 0 for all q ≥ 1.

Then for every q ≥ 0, there is a natural functor isomorphism

Φq : Hq(X,S ) −→ H̃q(X,S )

which is compatible with the connecting homomorphisms.

Combining Definition 3.1.19, Proposition 3.1.20, Theorem 3.1.21, Corollary 3.1.24, and Theorem 3.1.25, we

arrive at the following theorem.

Theorem 3.1.26. ([19, p. 43]). Let S be a sheaf on X, where X is paracompact. Then for all q ≥ 0,

Ĥ
q
(X,S ) ∼= Hq(X,S ).

Cohomology of Finite Maps. We conclude this section with a discussion of finite maps. Such maps will

play a very important role in the proof of Cartan’s Theorem B.
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Definition 3.1.27. Let f : X −→ Y be a continuous map between locally compact topological spaces.

· We say that f : X −→ Y is proper if for every compact set K ⊂ Y , the preimage f−1(K) is compact.

· We say that f is a closed map if f(K) ⊆ Y is closed for every closed set K ⊆ X. If, in addition to

this, f is continuous, and for every y ∈ Y , the fibre f−1(y) is a finite set, then f is said to be a finite

map.

Note that if we write that f : X −→ Y is a finite map, it is understood that X and Y are both locally compact

topological spaces. Further, we remind the reader that all locally compact topological spaces are assumed to

be Hausdorff.

Example 3.1.28. The map f : C −→ C, defined by f(z) := zn is finite for each n ∈ N. The projection map

π : C2 −→ C, defined by π(z, w) = z, is not finite however, since π−1(0) = {0} × C.

Definition 3.1.29. Let S be a sheaf of abelian groups on X. For a continuous map f : X −→ Y , we define

the direct image sheaf f∗S on Y to be the sheaf associated to the presheaf

Y ⊃ V 7−→ S (f−1(V )) =: (f∗S )(V ).

Proposition 3.1.30. ([19, p. 47]). Let f : X −→ Y be a finite map, and suppose that over X we have an

exact sequence of sheaves of abelian groups

R
ϕ−−−→ S

ψ−−−→ T .

Then the sequence

f∗R
f∗(ϕ)−−−−−−→ f∗S

f∗(ψ)−−−−−−→ f∗T

is also exact.

This yields the following very important theorem:

Theorem 3.1.31. ([19, p. 47]). Let f : X −→ Y be a finite map, and let S be a sheaf of complex vector

spaces over X. Then for each q ≥ 0, we have natural complex vector space isomorphisms

Hq(X,S ) ∼= Hq(Y, f∗(S )).

The above theorem is the primary motivation for the consideration of analytic blocks in place of analytic

stones in §3.3. We conclude with a statement of Grauert’s direct image theorem for finite maps:

Theorem 3.1.32. ([19, p. 54]). Let (X,OX) and (Y,OY ) denote complex analytic spaces. Let f : X −→ Y

be a finite map, and suppose that S is a coherent analytic sheaf on X. Then the direct image f∗S is a

coherent analytic sheaf on Y .

Remark 3.1.33. Note that Grauert’s direct image theorem holds also for proper maps. This generalisation

however is substantially more difficult to prove (see, e.g., [20, Chapter X]).
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§3.2. Dolbeault Cohomology

In §1.3 we discussed the calculus of differential forms and in particular, we defined the Dolbeault operator

∂ : Ωp,q(G) −→ Ωp,q+1(G). This differential operator will be used as a coboundary operator in Dolbeault

cohomology in the same way that the exterior derivative is used in the de Rham cohomology of smooth

manifolds.

Definition 3.2.1. Let G ⊆ Cn be a domain and ω ∈ Ωp,q(G) a smooth (p, q)–form. We will say that ω is

∂–closed if ∂ω = 0. If there exists a smooth (p, q − 1)–form η ∈ Ωp,q−1(G) such that ω = ∂η, we say that ω

is ∂–exact. The set of all smooth ∂–closed (p, q)–forms and ∂–exact (p, q)–forms will be denoted by Z p,q(G)

and Bp,q(G), respectively.

Recall from Proposition 1.3.19 that ∂
2

= ∂◦∂ = 0, and therefore every ∂–exact form is ∂–closed. The converse,

however, is not true in general, and the obstruction of every ∂–closed form being ∂–exact is measured by the

Dolbeault cohomology groups. To discuss this cohomology theory, and relate it to the sheaf cohomology

treated in §3.1, we introduce the following class of sheaves:

Definition 3.2.2. Let S be a sheaf of abelian groups on a domain G ⊆ Cn, and let U = (Uλ)λ∈Λ be a locally

finite open cover of G. A partition of unity of S , subordinate to the cover U, is a collection of morphism of

sheaves ηλ : S −→ S such that

(i) ηλ ≡ 0 in an open neighbourhood of G\Uλ.

(ii)
∑

λ∈Λ ηλ = Id.

Definition 3.2.3. A sheaf of abelian groups S on a domain in Cn is said to be fine if it admits a partition

of unity subordinate to any locally finite open cover.

Proposition 3.2.4. ([26, p. 175]). Let S be a fine sheaf on a domain in Cn, then S is a soft sheaf.

Lemma 3.2.5. ([26, p. 184]). If G ⊆ Cn is a domain, the sheaf A p,q of smooth (p, q)–forms on G is a fine

sheaf. In particular, by Proposition 3.2.4, A p,q is soft.

Lemma 3.2.6. ([26, p. 184]). Let G be a domain in Cn. We have an exact sequence of sheaves of abelian

groups

0 −→ OG
ı−−−→ A 0,0 ∂0−−−−→ A 0,1 ∂1−−−−→ A 0,2 −→ · · · −→ A 0,n ∂n−−−−→ 0 (18)

over G. We call the exact sequence (18) a resolution of soft sheaves.

Observe that by combining Lemma 3.2.6, Proposition 3.2.4, and Proposition 3.1.15, we have an exact sequence

0 −→ OG(G)
ı−→ Ω0,0(G)

∂0−−→ Ω0,1(G)
∂1−−→ Ω0,2(G) −→ · · · −→ Ω0,n(G) −→ 0. (19)

The exact sequence (18) allows us to compute the Dolbeault cohomology groups of a domain G ⊆ Cn. As the

reader may already expect, the Dolbeault cohomology groups are the sheaf cohomology groups computed via

this resolution of soft sheaves.
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Definition 3.2.7. Let G ⊆ Cn be a domain in Cn. The Dolbeault cohomology groups Dp,q(G) are the quotient

groups

D0,0(G) := OG(G), and Dp,q(G) :=
ker(∂q)

im(∂q−1)
=

Z p,q(G)

Bp,q(G)
, ∀q ≥ 1,

associated to (19).

Theorem 3.2.8. ([26, p. 184]). Let G be a domain in Cn. Then for each q ≥ 0, we have isomorphisms

Hq(G,O) ∼= D0,q(G).

In what remains of this section, we want to prove that if G ⊆ Cn is a simply-connected polydomain (Definition

3.2.12), then Dp,q(G) = 0 for all p ≥ 0, and all q ≥ 1.

Lemma 3.2.9. Let ∆ ⊂ ∆ denote polydisks centred at the origin in Cn with ∆ ⊂ ∆′. Suppose that f is a

smooth function in ∆′, which is holomorphic in the variables zk+1, ..., zn, for some 1 ≤ k ≤ n− 1. Then there

exists a function u ∈ C∞(∆′), holomorphic in zk+1, ..., zn, such that

∂u

∂zk
(z) = f(z), ∀z ∈ ∆.

Proof. Write ∆ = ∆1×· · ·×∆n, and ∆′ = ∆′1×· · ·×∆′n, for the product decomposition of the polydisks,

and let ρ : C −→ R be a smooth bump function1 such that

ρ(z) :=

1, ∀z ∈ ∆k,

0, ∀z ∈ C\∆′k.

We define a function u by setting

u(z1, ..., zn) :=
1

2πi

∫
C

ρ(ζ)g(z1, ..., zk−1, ζ, zk+1, ..., zn)

ζ − zk
dζ ∧ dζ.

This function is smooth with compact support in ∆′. Hence, by differentiating under the integral sign, we see

that

∂u

∂zk
(z) = (ρ · g)(z) = g(z), ∀z ∈ ∆.

Further, since
∂f

∂z`
= 0, by again differentiating under the integral sign, we see that

∂u

∂z`
= 0 for each

` = k + 1, ..., n. �

1Recall that a bump function is a smooth R–valued function that is equal to 1 on a specified closed set and is supported in a

specified open set (see, e.g., [40, p. 51]). The existence of such a function is proved in [26, p. 288].
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Theorem 3.2.10. (Dolbeault Lemma). Let ∆ ⊂ ∆′ be two polydisks centred at the origin in Cn, with ∆ ⊂ ∆′.

Let ω ∈ Ωp,q(∆′) be a smooth ∂–closed form, where q > 0. There exists a smooth form η ∈ Ωp,q−1(∆) such

that ω|∆ = ∂η.

Proof. Without loss of generality, we may assume that p = 0. The form ω in the coordinates z =

(z1, ..., zn) of Cn is written

ω =
∑

1≤j1<···<jq≤n
ωj1···jqdzj1 ∧ · · · ∧ dzjq =

∑
J

ωJdzJ , (20)

where the functions ωJ are smooth in ∆′, and J = (j1, ..., jq). Let 0 ≤ k ≤ n denote the smallest integer such

that (20) does not involve the differentials dzk+1, ..., dzn. We proceed by induction on k. Observe that for

k = 0, since q > 0, there is nothing to prove. Therefore, assume k ≥ 1, and that the result has been shown

for k − 1. Choose smooth forms α ∈ Ω0,q−1(∆′), and β ∈ Ω0,q(∆′), not involving the differentials dzk, ..., dzn,

such that

ω = dzk ∧ α+ β.

We will signify that dzk, ..., dzn does not occur in a summation by writing ′
∑

. Now, if α = ′∑
|J |=q−1 αJdzJ ,

then

0 = ∂ω = −dzk ∧ ∂α+ ∂β

= −
∑
6̀=k
dzk ∧ dz` ∧

′ ∑
|J |=q−1

∂αJ
∂z`

dzJ

+ ∂β.

Therefore,
∂αJ
∂z`

≡ 0 for all ` > k, and by Lemma 3.1.3 we can choose smooth functions AJ ∈ C∞(∆′),

holomorphic in zk+1, ..., zn, such that
∂AJ
∂zk

= αJ on ∆. Set γ := ′∑
|J |=q−1AJdzJ . Then

∂γ = ′
∑
|J |=q−1

∑
` 6∈J

∂AJ
∂z`

dz` ∧ dzJ

= ′
∑
|J |=q−1

αJdzk ∧ dzJ +
∑

`<k, 6̀∈J

∂AJ
∂z`

dz` ∧ dzJ


= dzk ∧ ′

∑
|J |=q−1

αJdzJ + · · ·

= dzk ∧ α+ ξ,

where ξ is a smooth form not involving dzk, ..., dzn. We note that β − ξ does not involve the differentials

dzk, ..., dzn, and since β − ξ = (ω − dzk ∧ α)− (∂γ − dzk ∧ α) = ω − ∂γ, we see that ∂(β − ξ) = 0. Hence, by

the induction hypothesis, we may choose a smooth (0, q − 1)–form ρ ∈ Ω0,q−1(∆) such that (β − ξ)|∆ = ∂ρ.

Setting η := ρ+ γ, we see that

∂η = ∂ρ+ ∂γ = (β − ξ)|∆ + (ω − β + ξ)|∆ = ω|∆,

as required. �
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Remark 3.2.11. Let Z 0,1
G denote the sheaf of ∂–closed (0, 1)–forms on a domain G ⊆ Cn, and as usual,

denote the sheaf of smooth functions on G by C∞G . By Theorem 3.2.10, the morphism ∂ : C∞G −→ Z 0,1
G is

stalkwise surjective. But if D0,1(G) is non-zero, it is not true that the induced map ∂ : C∞G (G) −→ Z 0,1
G (G)

on sections is surjective. This provides an illustrative example of a surjection of sheaves which does not induce

a surjection at the level of sections.

Definition 3.2.12. A polydomain in Cn is understood as a domain of the form

G = G1 × · · · ×Gn,

where Gk is a domain in C for each 1 ≤ k ≤ n.

Theorem 3.2.13. Let G be a simply-connected polydomain in Cn. Then for all p ∈ N0, q ∈ N, Dp,q(G) = 0.

Proof. By the Riemann mapping theorem of one complex variable, we may assume that G is the unit

polydisk ∆ centred at the origin in Cn. We need to show that for every smooth (p, q)–form ω ∈ Ωp,q(∆), there

exists a smooth (p, q − 1)–form η ∈ Ωp,q−1(∆) such that ω = ∂η. To this end, we exhaust ∆ by concentric

polydisks (∆ν)ν≥1 in Cn, i.e., ∆ν ⊂ ∆ν+1 for each ν ≥ 1, and ∆ =
⋃
ν≥1 ∆ν , then prove the result in two

separate cases: when q > 1, and when q = 1.

Suppose first that q > 1. For each ν ≥ 1, let Uν be some open neighbourhood of ∆ν . We proceed inductively

to construct a sequence ην ∈ Ωp,q−1(Uν) such that

(i) ω = ∂ην on ∆ν .

(ii) ην+1|∆ν = ην .

For ν = 1 we need only apply Theorem 3.2.10, so assume that ν > 1, and that we have chosen η1, ..., ην such

that (i) and (ii) are satisfied. By Theorem 3.2.10 there exists a smooth (p, q − 1)–form ξν+1 ∈ Ωp,q−1(Uν+1)

such that ω|Uν+1 = ∂ξν+1. On any open neighbourhood Uν of ∆ν , the (p, q − 1)–form ξν+1 − ην is ∂–closed

since ∂(ξν+1 − ην) = ω − ω = 0. Given that q − 1 > 0, applying Theorem 3.2.10, there exists a smooth

(p, q − 2)–form ϑ ∈ Ωp,q−2(Uν) such that ξν+1 − ην = ∂ϑ. Choose a smooth bump function ρ ∈ C∞(Cn,R)

such that

ρ(z) :=

1, ∀z ∈ ∆ν ,

0, ∀z ∈ Cn\Uν .

Setting ην+1 := ξν+1 + ∂(ρ · ϑ), we obtain a smooth (p, q − 1)–form on Uν+1 such that ∂ην+1 = ∂ξν+1 = ω on

Uν+1, and ην+1|∆ν = ξν+1|∆ν + ∂ϑ = ην , as required.

Now suppose that q = 1. We again proceed by induction on ν ≥ 1, but this time, we construct a sequence

ην ∈ Ωp,q−1(Uν) such that

(I) ω = ∂ην on ∆ν .

(II) the forms ην+1 − ην are holomorphic forms of bidegree (p, 0) on Uν , which satisfy the estimate∣∣ην+1,j1···jp(z)− ην,j1···jp
∣∣ < 2−ν ,

for all z ∈ ∆ν , and all coefficients (j1, ..., jp).
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For ν = 1, this is again immediate from Theorem 3.2.10. So suppose ν > 1, and that η1, ..., ην have been

constructed such that (I) and (II) are satisfied. By Theorem 3.2.10 there exists a smooth (p, q − 1)–form

ξν+1 ∈ Ωp,q−1(Uν+1) such that ω = ∂ξν+1. Moreover, since ∂(ξν+1 − ην) = 0, the coefficients of ξν+1 − ην are

holomorphic on Uν , and each coefficient admits a power series expansion centred at the origin which converges

uniformly on ∆ν . Therefore, by appropriately choosing the partial sums, we obtain polynomials fj1···jp(z)

such that ∣∣ξν+1,j1···jp(z)− ην,j1···jp(z)− fj1···jp(z)
∣∣ < 2−ν ,

for all z ∈ ∆ν . Set

f(z) :=
∑

j1,...,jp

fj1···jp(z)dzj1 ∧ · · · ∧ dzjp ,

and define ην+1 := ξν+1 − f . We observe that ην+1 is a smooth (p, q − 1)–form on Uν+1 with ∂ην+1 =

∂ξν+1 − ∂f = ∂ξν+1 = ω on Uν+1. Since ∂(ην+1 − ην) = 0, the smooth (p, 0)–form ην+1 − ην is holomorphic

on Uν , and satsfies the desired estimate by construction.

Finally, for each ν ≥ 1, the coefficients of ην converge uniformly on any one of the polydisks ∆ν to the

coefficients of a smooth (p, q − 1)–form η. Since η − ηµ = limν→∞(ην − ηµ), and the forms ην − ηµ are

holomorphic on ∆µ, it follows that η = ηµ + ϑµ for some holomorphic form ϑµ. Therefore, ∂η = ∂ηµ = ω in

each ∆µ, and this completes the proof. �

§3.3. Cartan’s Theorem B for Stein Spaces

We have developed enough machinery to state Cartan’s theorem B for Stein spaces. There is more theory

to be developed, but can we can make a good amount of progress on the proof with what we have already.

Throughout this section, we assume that Cartan’s theorem B holds for simply-connected polydomains in Cn.

A proof of this is given in §3.4. Moreover, we often abbreviate (X,OX) to X when X is understood to be a

complex analytic space. Let us offer a statement of the main theorem.

Cartan’s Theorem B. Let X be a Stein space, then for any coherent analytic sheaf S on X, Hq(X,S ) = 0

for all q ≥ 1.

The proof of Cartan’s theorem B uses an argument of exhaustion type. That is, we will exhaust X by a

suitable class of sets (Kν)ν≥1 on which theorem B holds, and bootstrap our way up to obtain the result on X,

c.f., Triviality 2.4.23. The obvious first choice of exhaustion sets (Kν)ν≥1 is given in the following definition:

Definition 3.3.1. Let X be a complex analytic space, and K a closed subset of X. We say that K is a

B–space if Cartan’s theorem B holds on K, i.e., for any coherent analytic sheaf S on K, Hq(K,S ) = 0 for

all q ≥ 1.

Convention 3.3.2. Note that by S being defined on a closed set K we mean that S is the restriction to K

of a sheaf defined on an open neighbourhood of K.

Let (Kν)ν≥1 be a sequence of B–spaces which exhaust a complex analytic space X, i.e.,

X =
⋃
ν≥1

Kν , and Kν ⊂ K̊ν+1, ∀ν ∈ N.
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The sheaf cohomology groups Hq(X,S ) of X are computed via a resolution of soft sheaves:

0 −→ S −→ S 0 −→ S 1 −→ · · · −→ S q−1 −→ S q −→ · · · .

The restriction of S to Kν yields the following commutative diagram:

0 S (X) S 0(X) S 1(X) · · · S q−1(X) S q(X) · · ·

0 S (Kν) S 0(Kν) S 1(Kν) · · · S q−1(Kν) S q(Kν) · · ·

ı d0 d1 dq−1

resν resν resν resν resν

ı dν0 dν1 dνq−1

Observe that Hq(Kν ,S ) = ker(dνq )/im(dνq−1) = 0 if and only if the bottom row of the above diagram is exact

at S q(Kν), i.e., ker(dνq ) = im(dνq−1). Moreover, for each q ≥ 0, S q is a soft sheaf, and therefore any section

in S q(Kν) is the restriction to Kν of a global section in S q(X).

Proposition 3.3.3. Let X be a complex analytic space which admits an exhaustion by B–spaces. Then for

any coherent analytic sheaf S on X, Hq(X,S ) = 0 for all q ≥ 2.

Proof. Let (Kν)ν≥1 be an exhaustion of X by B–spaces. To show that Hq(X,S ) = 0 for all q ≥ 2, we

need to show that for any α ∈ ker dq there exists some β ∈ S q−1(X) such that dq−1(β) = α. To achieve this,

we construct a sequence βν ∈ S q−1(Kν) such that for each ν ≥ 1,

(i) dνq−1(βν) = resν(α).

(ii) resν(βν+1) = βν .

We may then glue together these sections to obtain a global section β ∈ S q−1(X) such that

resν(β) = βν and dνq−1(βν) = resν(α).

Since Hq(Kν ,S ) = 0 for each ν ≥ 1, we have a sequence β′ν ∈ S q−1(Kν) with dνq−1(β′ν) = resν(α). We

proceed inductively to construct the desired sequence (βν)ν≥1. Set β1 := β′1, and assume that β1, ..., βν have

been chosen such that (i) and (ii) are satisfied. We compute

dνq−1(resν(β′ν+1)− βν) = dνq−1(resν(β′ν+1))− dνq−1(βν)

= resν(dν+1
q−1(β′ν+1))− resν(α) (21)

= resν(α)− resν(α) = 0,

i.e., resν(β′ν+1) − βν lies in the kernel of dνq−1. Note that (21) follows from the commutativity of the above

diagram. By the exactness of the bottom row of the diagram we choose γ′ν ∈ S q−2(Kν) such that dνq−2(γ′ν) =

resν(β′ν+1) − βν . For each q ≥ 2, the sheaves S q−2 are soft, so γ′ν ∈ S q−2(Kν) is the restriction to Kν of a

global section γν ∈ S q−2(X). Set βν+1 := β′ν+1 − resν+1(dq−2(γν)); we claim that βν+1 satisfies (i) and (ii).
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Indeed, (i) follows from:

dν+1
q−1(βν+1) = dν+1

q−1

(
β′ν+1 − resν+1(dq−2(γν))

)
= dν+1

q−1(β′ν+1)− dν+1
q−1(resν+1(dq−2(γν)))

= resν+1(α)− dν+1
q−1 ◦ d

ν+1
q−2 ◦ resν+1(γν) (22)

= resν+1(α),

where (22) follows from the commutativity of the above diagram, and the last line follows from the fact that

dν+1
q−1 ◦ d

ν+1
q−2 = 0. To see that βν+1 satisfies (ii), we simply observe that

resν(βν+1) = resν(β′ν+1 − dq−2(γν))

= resν(β′ν+1)− resν(dq−2(γν))

= resν(β′ν+1)− (resν(β′ν+1)− βν)

= βν ,

as required. �

Remark 3.3.4. In the proof of Proposition 3.3.3, we used the fact that for each q ≥ 2, the sheaves S q−2

were soft. This allowed us to extend any section in S q−2(Kν) to a global section in S q−2(X). This does

not work for H1(X,S ) however, since S is not necessarily a soft sheaf. Therefore, to establish the vanishing

of H1(X,S ), a different approach must be taken. Indeed, in place of extending sections of S q−2(Kν) to

sections of S q−2(X), we will endow S q−2(X) with a suitable (Fréchet) topology such that for each ν ≥ 1,

S (X)|Kν is dense in S (Kν). This program will also require a refinement in the choice of exhaustion sets.

The following class of exhaustion sets will be of more use.

Definition 3.3.5. Let X be a complex analytic space. An analytic stone in X is a quadruple (S, π,Q,W )

consisting of a compact set S ⊂ X, a holomorphic map π : X −→ Cm, a compact (Euclidean) block2 Q ⊂ Cm,

and an open set W ⊂ X such that π−1(Q) = S ∩W . We define the analytic interior of S to be the set

Å(S) := π−1(Q̊) ∩W , where Q̊ denotes the topological interior of Q.

Notational Remark 3.3.6. We will often abbreviate (S, π,Q,W ) to (S, π).

We consider the following elementary lemma from point-set topology.

Lemma 3.3.7. Let X and Y be two locally compact topological spaces, and f : X −→ Y a continuous map.

If W an open relatively compact subset of X, then the induced map g : W\f−1(f(∂W )) −→ Y \f(∂W ) is a

proper map.

Proof. Let K ⊂ Y \f(∂W ) be a compact set, and let U := {Uλ}λ∈Λ be an open cover for f−1(K). The

set V := W\f−1(K) is open in W , so U∪V is an open cover of W . Since W is compact, U∪V admits a finite

subcover {Uλ1 , ..., Uλn , V }. But this implies that {Uλ1 , ..., Uλn} is an open cover of f−1(K), which is a finite

subcover of U, as required. �

2In other words, a product of rectangles Q = Q1 × · · · ×Qm, where Qk := {zk = xk + iyk : ak ≤ xk ≤ bk, ck ≤ yk ≤ dk}. If

we set gk := 1
2
(bk − ak), and hk := 1

2
(dk − ck), then (g1, h1, g2, h2, ..., gm, hm) ∈ Cm is called the centre of the block Q.
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Lemma 3.3.8. Let (S, π) be an analytic stone in a complex analytic space X. There exist open neighbour-

hoods U and V of S and Q respectively, such that π(U) ⊂ V , S = π−1(Q)∩U , and π|U : U −→ V is a proper

map.

Proof. Let W ⊂ X be the open set associated to (S, π). Since S is compact, W may be taken to be

relatively compact, and therefore ∂W and π(∂W ) are compact sets. Moreover, since ∂W ∩ π−1(Q) = ∅, the

open set V := Cm\π(∂W ) yields an open neighbourhood of Q. The set U := π−1(V ) ∩W = W\π−1(π(∂W ))

is an open set in X with π(U) ⊂ V , and the restriction of π to U yields a proper map by Lemma 3.3.7.

Further,

π−1(Q) ∩ U = π−1(Q) ∩W\
(
π−1(Q) ∩ π−1(π(∂W ))

)
.

Since Q ∩ π(∂W ) = ∅, we see that π−1(Q) ∩ π−1(π(∂W )) = ∅, and therefore, π−1(Q) ∩ U = S. In particular,

U is an open neighbourhood of S, and this completes the proof. �

We want to exhaust a complex analytic space by these analytic stones. We thus need to make sense of an

inclusion of analytic stones.

Definition 3.3.9. Let (S1, π1) := (S1, π1, Q1,W1) and (S2, π2) := (S2, π2, Q2,W2) be analytic stones in a

complex analytic space X. We say that (S1, π1) is contained in (S2, π2), and write (S1, π1) � (S2, π2), if

(i) S1 is contained in the analytic interior of S2, i.e., S1 ⊂ Å(S2).

(ii) there exists an n ∈ N and q ∈ Cn such that Cm2 = Cm1 × Cn, and Q1 × {q} ⊂ Q̊2.

(iii) there exists a holomorphic map ϕ : X −→ Cn such that π2(x) = (π1(x), ϕ(x)) for all x ∈ X.

Definition 3.3.10. A sequence of analytic stones (Sν , πν)ν≥1 in a complex analytic space X is said to be an

exhaustion of X by analytic stones if

(i) for each ν ≥ 1, there is an inclusion (Sν , πν) � (Sν+1, πν+1).

(ii) X =
⋃
ν≥1 Å(Sν).

Proposition 3.3.11. Let X be a complex analytic space, and let K ⊂ X be a compact set. If there exists a

relatively compact neighbourhood W ⊂ X of K such that ∂W ∩ K̂ = ∅, then there exists an analytic stone

(S, π) such that K ⊂ Å(S).

Proof. Suppose that ∂W ∩ K̂ = ∅. By Lemma 2.1.8, for any point p ∈ ∂W there exists an analytic

function f ∈ OX(X) such that ‖f‖K < 1 < |f(p)|. Since W is relatively compact, the boundary ∂W is

compact, and we can choose a finite number of global sections f1, ..., fm ∈ OX(X) such that

max
1≤k≤m

{
max
z∈K
|Re(fk)| , max

z∈K
|Im(fk)|

}
< 1. (23)

and by raising the fk to a suitable power if necessary,

max
1≤k≤m

{|Re(fk)(p)| , |Im(fk)(p)|} > 1, ∀p ∈ ∂W. (24)

Set Q := {(z1, ..., zm) ∈ Cm : |Re(zj)| ≤ 1, |Im(zj)| ≤ 1} to be the standard unit block in Cm and define

a holomorphic map π : X −→ Cm by setting π(x) = (red(f1)(x), ..., red(fm)(x)). Then from (23) and

(24), π(∂W ) ∩ Q = ∅, and K ⊂ π−1(Q̊) ∩W . In particular, we obtain an analytic stone (S, π) by setting

S := π−1(Q) ∩W , which is compact and whose analytic interior contains K, i.e., K ⊂ Å(S). �
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Theorem 3.3.12. Let X be a Stein space, then X admits an exhaustion by analytic stones.

Proof. By Proposition 2.4.22, every complex analytic space X admits an exhaustion by compact sets

(Kν)ν≥1. We proceed inductively to construct an exhaustion by analytic stones (Sν , πν)ν≥1 such that Kν−1 ⊂
Å(Sν−1) for each ν ≥ 2. To this end, choose (S1, π1) in the obvious way, and suppose that (Sν−1, πν−1) is

an analytic stone with Kν−1 ⊂ Å(Sν−1). Since X is holomorphically convex, the holomorphically convex

hull of Kν ∪ Sν−1 is compact. By Proposition 3.3.11 we construct an analytic stone (Sν , π
∗
ν) such that

Kν∪Sν−1 ⊂ Å(Sν). Let π∗ν : X −→ Cn be the holomorphic map, Q∗ν to be the associated compact (Euclidean)

block, and W ⊂ X the open set such that Sν = (π∗ν)−1(Q∗ν) ∩ W . Choose a compact (Euclidean) block

Q′ν ⊂ Cmν−1 such that Qν−1 and πν−1(Sν) are both contained in Q̊′ν . Set πν = (πν−1, π
∗
ν) : X −→ Cmν−1×Cn,

where Qν = Q′ν ×Q∗ν . We claim that (Sν , πν) is the desired analytic stone. Indeed,

π−1
ν (Qν) ∩W = π−1

ν−1(Q′ν) ∩
(
(π∗ν)−1(Q∗ν) ∩W

)
= π−1

ν−1(Q′ν) ∩ Sν = Sν ,

where the last equality follows from the fact that πν−1(Sν) ⊂ Q̊′ν . In particular π−1
ν−1(Q′ν) is contained in the

analytic interior Å(Sν). Finally, given that X =
⋃
ν≥1Kν ⊂

⋃
ν≥1 Å(Sν), it follows that X may be exhausted

by analytic stones. �

Definition 3.3.13. Let (S, π) be an analytic stone in a complex analytic space. By Lemma 3.3.8, there exist

open neighbourhoods U and V of S and W respectively, such that π|U : U −→ V is a proper map. If U and

V can be chosen such that π|U : U −→ V is a finite map, then (S, π) is said to be an analytic block.

Proposition 3.3.14. Let (S, π) be an analytic block in a complex analytic space X, then S is a B–space.

Proof. Let τ := π|U : U → V be the finite map specified by the definition of an analytic block, and

let S be a coherent analytic sheaf on S. Choose the neighbourhood U ⊃ S sufficiently small such that

S is coherent on U . The restriction of a finite map remains finite and we identify V with a smaller open

neighbourhood induced from this restriction of U . By Theorem 3.1.32 the direct image sheaf T := τ∗S is a

coherent analytic sheaf on V , and by Theorem 3.1.31 there is an induced isomorphism of cohomology groups

Hq(S,S ) ∼= Hq(Q,T ). By Cartan’s theorem B for simply-connected polydomains (see Theorem 3.4.10)

Hq(S,S ) ∼= Hq(Q,T ) = 0 for all q ≥ 1, and so S is a B–space. �

Definition 3.3.15. An exhaustion of a complex analytic space X by analytic stones (Sν , πν)ν≥1 is said to be

an exhaustion by analytic blocks if each analytic stone (Sν , πν) is an analytic block.

Proposition 3.3.16. Let X be a Stein space, then X admits an exhaustion by analytic blocks (Sν , πν)ν≥1.

Proof. Let X be a Stein space. By Theorem 3.3.12 X admits an exhaustion by analytic stones. For any

analytic stone (Sν , πν) in this exhaustion let Uν and Vν be the respective open neighbourhoods of Sν and Qν

such that τν := π|Uν : Uν −→ Vν is a proper map. We want to show that τν is finite for each ν ≥ 1. To this

end, choose a point y ∈ Vν and let Hν be a connected component of the fibre τ−1
ν (y) ⊂ X. Since τν is proper

τ−1
ν (y) is compact, and by the maximum principle, the restriction to Hν of any f ∈ OX(X) is constant. Since

X is Stein however, X is holomorphically separable and this can only occur if H consists of a single point.

Finally, since a compact set has only a finite number of connected components it follows that τν is finite. �
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Remark 3.3.17. By this point, the reader may be overwhelmed by the technical nature of the arguments.

We wish to offer the reader with some intuition to lift their head above the trees and regain sight of the forrest.

Our goal is to prove that every Stein space (X,OX) is a B–space. By Proposition 3.3.3, if we exhaust X by

B–spaces, Hq(X,S ) = 0 for all q ≥ 2. The problem is therefore concentrated in showing that H1(X,S ) = 0.

The prototypical B–space, for us at least, is a compact block3 Q ⊂ Cm. Our plan of attack is therefore to

construct an exhaustion (Kν)ν≥1 of X which hijacks the results of the protype case, and establishes them on

X. The desired exhaustion should satisfy the following:

(i) Each Kν is a B–space.

(ii) We may endow each S (Kν) with a suitable Fréchet topology to approximate sections in S (X)|Kν
by sections in S (Kν), c.f., Remark 3.3.4.

(iii) A Stein space must admit an exhaustion by these sets.

By Theorem 3.3.12, any holomorphically convex complex analytic space admits an exhaustion by analytic

stones. But Lemma 3.3.8 only ensures that π|U : U −→ V is a proper map, so Theorem 3.1.31 is not readily

available. To circumvent this problem, we simply define analytic blocks to be exactly those analytic stones

which ensure that (i) is satisfied. By Proposition 3.3.16, a Stein space admits an exhaustion by analytic

blocks, so an exhaustion by analytic blocks satisfies (iii) also. The fact that an exhaustion by analytic blocks

satisfies (ii) is the content of §4.1 (see Theorem 4.1.5).

Let us note that in the proof of Proposition 3.3.16 we have used both the assumption of holomorphic convexity

and holomorphic separability. Therefore, despite the fact that a compact complex manifold will admit an

exhaustion by analytic stones, it will not admit an exhaustion by analytic blocks, c.f., Lemma 2.1.8, and

Remark 2.1.15.

§3.4. Cartan’s Theorem B for Simply-Connected Polydomains in Cn.

Let G ⊆ Cn be a simply-connected polydomain, and let S be a coherent analytic sheaf on G. The purpose of

this section is to show that Hq(G,S ) = 0 for all q ≥ 1. We follow the argument in Chapter 6 of [26], which

first appeared in [25], and centres around the notion of a syzygy which was discussed in §2.3.

We remind the reader of the definition. Indeed, a chain of syzygies of length k for an analytic sheaf S is an

exact sequence of the form

0 −→ Opk λk−−−−→ Opk−1 −→ · · · −→ Op1 λ1−−−−→ Op λ−−−→ S −→ 0, (25)

where pk ∈ N.

Lemma 3.4.1. Let G be a simply-connected polydomain in Cn, then Hq(G,O) = 0 for all q ≥ 1.

Proof. This is an immediate consequence of Theorem 3.2.13 and Theorem 3.2.8. �

3The fact that Q is a B–space is proved in the next section (see Theorem 3.4.10).
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Proposition 3.4.2. Let G ⊆ Cn be a simply-connected polydomain and S an analytic sheaf over G. If S

admits a terminating chain of syzygies over G, then Hq(G,S ) = 0 for all q ≥ 1.

Proof. Let S be an analytic sheaf over G which admits a terminating chain of syzygies of the form (25).

We will proceed by induction on the length k of the syzygy (25). For k = 0 (25) is just the exact sequence

0 −→ Op −→ S −→ 0. In other words, there is an isomorphism Op ∼= S . If p = 1 then Lemma 3.4.1 informs

us that Hq(G,S ) = 0, therefore, assume that p > 1. By the exactness of the sequence

0 −→ O −→ Op −→ Op−1 −→ 0

we have an induced exact sequence on cohomology

Hq(G,O) −→ Hq(G,Op) −→ Hq(G,Op−1) −→ Hq+1(G,O).

Then by Lemma 3.4.1 Hq(G,O) ∼= Hq+1(G,O) = 0. Therefore Hq(G,Op) ∼= Hq(G,Op−1) for all p ≥ 2 and

q ≥ 1. Now assume the result holds for all syzygies of lengths at most k− 1. The syzygy (25) may be severed

into two exact sequences

0 −→ F −→ Op λ−−−→ S −→ 0 (26)

and

0 −→ Opk −→ · · · −→ Op −→ F −→ 0,

where F = K er(λ). The induction hypothesis informs us that Hq(G,F ) = 0 for all q ≥ 1. Therefore, from

(26), we have an isomorphism between Hq(G,S ) and Hq(G,Op) for all q ≥ 1. We showed above however

that Hq(G,Op) = 0 for all p, q ≥ 1, so Hq(G,S ) = 0, and this completes the proof. �

Corollary 3.4.3. Let G ⊆ Cn be a simply-connected polydomain. Associated to any terminating chain of

syzygies over G of the form (25) there is an associated exact sequence

0→ Opk(G)
λk−−−−→ Opk−1(G)→ · · · → Op1(G)

λ1−−−−→ Op(G)
λ−−−→ S (G)→ 0, (27)

at the level of sections.

Proof. We proceed by induction on the length k of the syzygy (25). If k = 0 the claim is trivial, so

assume that k > 0 and that the result holds for all syzygies of length at most k − 1. Just as we did in the

proof of Proposition 3.4.2, write (25) as two shorter exact sequences

0 −→ Opk −→ · · · −→ Op −→ F −→ 0, (28)

and

0 −→ F −→ Op λ−−−→ S −→ 0 (29)

with F = K er(λ). By the induction hypothesis (28) induces an exact sequence on sections

0 −→ F (G) −→ Op(G)
λ−−−→ S (G) −→ 0.

Further, by the exact sequence on cohomology associated to (29), the following sequence is also exact

0 −→ F (G) −→ Op(G) −→ S (G) −→ H1(G,S ) −→ · · · . (30)
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Then by (3), H1(G,S ) = 0, and by combining (29) and (30), it follows that (27) is exact. �

Definition 3.4.4. Let G ⊆ Cm be a domain and S an analytic sheaf over G. Let

Opm λm−−−→ Opm−1 −→ · · · −→ Op1 λ1−−→ Op λ−−→ S −→ 0 (31)

be a chain of syzygies for S . A modification of (31) at the kth place, 1 ≤ k ≤ m, is a syzygy for S of the

form

Opm Opm−1 · · · Opk+1 Opk+q Opk−1+q Opk−1 · · ·

· · · Op1 Op S 0,

λm λk+1 λ̃k λ̃k+1

λ1 λ

where the maps λ̃k and λ̃k+1 are defined in the obvious way.

Definition 3.4.5. Let G be a domain in Cn, and suppose that over G we have two coherent analytic sheaves

S and T which admits chains of syzygies of the form

Opm λm−−−→ Opm−1 −→ · · · −→ Op1 λ1−−→ Op0 λ−−→ S −→ 0, (32)

Oqm µm−−−→ Oqm−1 −→ · · · −→ Oq1 µ1−−−→ Oq0 µ−−→ T −→ 0. (33)

Let ϕ : S −→ T be a morphism of analytic sheaves. A morphism of syzygies lying over ϕ is a collection of

morphisms of analytic sheaves ϕk : Opk −→ Oqk such that the diagram

Opm Opm−1 · · · Op1 Op0 S 0

Oqm Oqm−1 · · · Oq1 Oq0 T 0

λm

µm

λ1 λ

µ1 µ

ϕm ϕm−1 ϕ1 ϕ0 ϕ

(34)

is commutative. If ϕ and all the ϕj are isomorphisms of analytic sheaves, we say that we have an isomorphism

of syzygies lying over ϕ.

Proposition 3.4.6. Suppose that G is a simply-connected polydomain in Cn, and let S , T be two analytic

sheaves which admit terminating chains of syzygies over G. If ϕ : S −→ T is an isomorphism of sheaves,

then after a finite number of modifications, there will exist an isomorphism between the two chains of syzygies

lying over ϕ.

Proof. Suppose that the analytic sheaves S and T admit terminating chains of syzygies of the form

0 Opm · · · Op1 Op S 0
µm µ1 µ

(35)

and

0 Oqr · · · Oq1 Oq T 0.
νr ν1 ν (36)

We proceed by induction on ` := max(m, r). Indeed, for ` = 0, (35) and (36) reduce to

0 Op S 0, and 0 Oq T 0,
µ ν
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i.e., S ∼= Op and T ∼= Oq. It is then clear that an isomorphism ϕ : S −→ T induces an isomorphism

ϕ0 : Op −→ Oq such that the diagram

0 Op S 0

0 Oq T 0

µ

ϕ0 ϕ

ν

is commutative. Now suppose the theorem holds for all pairs of syzygies of lengths at most ` − 1. Let

e1, ..., ep ∈ Op(G) denote the canonical generators of Op. The images ϕ ◦ µ(ek) ∈ T (G) are well-defined

sections, and by Corollary 3.4.3, since G is a simply-connected polydomain, we may choose f1, ..., fp ∈ Oq(G)

such that ν(fk) = ϕ ◦ µ(ek) for each 1 ≤ k ≤ p. Hence, we may define a map σ : Op −→ Oq such that

σ(ek) = fk for each k. Since e1, ..., ep are the generators of Op, and ν ◦σ(ek) = ν(fk) = ϕ ◦µ(ek) for each k, it

follows that ν ◦ σ = ϕ ◦ µ. Applying this same argument to ϕ−1 : T −→ S , we obtain a map τ : Oq −→ Op

such that µ ◦ τ = ϕ−1 ◦ ν. In pictures, the diagram

Op1 Op S 0

Oq1 Oq T 0

µ1 µ

σ ϕ

ν1 ν

τ (37)

is commutative. If we now make the obvious modifications of (35) and (36) at the first stage, we obtain the

diagram

· · · Op2 Op1 Op S 0

· · · Oq2 Oq1 Oq T 0,

µ′2 µ′1 µ′

ϕ0
ϕ

ν′2 ν′1 ν′

ϕ′0 (38)

where ϕ0 : Op ⊕Oq −→ Oq ⊕Op and ϕ′0 : Oq ⊕Op −→ Op ⊕Oq are defined as follows. For each x ∈ G,

(Opx ⊕Oqx) 3

(
fx

gx

)
7−→ ϕ0(fx, gx) =

(
gx − σ ◦ τ(gx) + σ(fx)

fx − τ(gx)

)
∈ (Oqx ⊕Opx),

and

(Oqx ⊕Opx) 3

(
sx

tx

)
7−→ ϕ′0(sx, tx) =

(
tx − τ ◦ σ(tx) + τ(sx)

sx − σ(tx)

)
∈ (Opx ⊕Oqx).

Since (37) is commutative, (38) is commutative by construction. Further, it can be readily verified that

ϕ′0 ◦ ϕ0 : Op ⊕ Oq −→ Op ⊕ Oq is the identity map, and therefore ϕ0 is an isomorphism. Set S0 : K er(µ′),

T0 := K er(ν ′), and observe that from (38), we have two exact sequences with a vertical isomorphism:

0 Opm · · · Op2 Op1+q S0 0

0 Oqr · · · Oq2 Oq1+p T0 0

µm µ′2 µ′1

ϕ0

νr ν′2 ν′1

(39)

By the induction hypothesis, after a finite number of modifications, we have an isomorphism between the two

terminating chains of syzygyies, lying over ϕ0. Combining the diagrams (38) and (39) completes the induction

step, and this finishes the proof. �

The following result due to H. Cartan [8] on holomorphic matrices will help us to glue syzygies together. To

assist the reader we offer the following diagram for reference.
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a1 a2 a3 a4

b1

b2

K1

x1

y1

K ′1 K ′′1

With the above diagram taken into consideration, let a1 < a2 < a3 < a4, b1 < b2 be real numbers. For

z = (z1, ..., zn) ∈ Cn we have zk = xk + iyk, where xk, yk ∈ R for all 1 ≤ k ≤ n. Moreover, we set

K1 := {z1 ∈ C : a2 < x1 < a3, b1 < y1 < b2},

K ′1 := {z1 ∈ C : a1 < x1 < a3, b1 < y1 < b2},

K ′′1 := {z1 ∈ C : a2 < x1 < a4, b1 < y1 < b2}.

Note that K ′1 ∩ K ′′1 = K1. Then choose K2, ...,Kn to be simply-connected domains in C with coordinates

z2, ..., zn, respectively. We now set

K := K1 ×K2 × · · · ×Kn,

K ′ := K ′1 ×K2 × · · · ×Kn,

K ′′ := K ′′1 ×K2 × · · · ×Kn.

We may now state Cartan’s lemma on holomorphic matrices. Given the length of the proof, we offer only the

statement (see, e.g., [8], [26, p. 199] for a proof).

Theorem 3.4.7. (Cartan). If F (z) is a holomorphic non-singular matrix in an open neighbourhood of K

as defined above, then there exist holomorphic non-singular matrices F ′ and F ′′ on K ′ and K ′′, respectively,

such that F (z) = F ′(z) · F ′′(z) for all z ∈ K.

Maintaining the above notation, we consider the following lemma:

Lemma 3.4.8. Let S be an analytic sheaf on K
′∪K ′′ which admits a terminating chain of syzygies over K

′
.

Assume that S also admits a terminating chain of syzygies over K
′′
. Then S admits a terminating chain of

syzygies over K
′ ∪K ′′.

Proof. This is a straightforward consequence of Proposition 3.4.6 and Theorem 3.4.7. Indeed, we first

observe that by enlarging K, K ′, and K ′′, it suffices to show that S admits a terminating chain of syzygies

over the polydomain K ′ ∪ K ′′. Let U ′ and U ′′ be respective open neighbourhoods of K
′

and K
′′

such that
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U := U ′ ∩ U ′′ is also a polydomain. Suppose that S admits a terminating chain of syzygies over U ′ and

over U ′′. Over U , this yields two terminating chains of syzygies of S |U . Then by Proposition 3.4.6, after

a finite number of modifications, we have an isomorphism between these syzygies lying over the identity

IdU : S |U −→ S |U . From Definition 3.4.4, we see that a modification over U ⊂ U ′ can be extended to a

modification over U ′, and after performing these modifications, we arrive at the following diagram

0 (O|U ′)pm · · · (O|U ′)p (S |U ′) 0

0 (O|U ′′)pm · · · (O|U ′′)p (S |U ′′) 0.

µm

λm

µ1 µ

λ0 IdU

νm ν1 ν

(40)

The maps λ0, ..., λm are isomorphisms on U which render (40) commutative when restricted to U (hence

why the vertical arrows are dashed). Each λk is represented by a non-singular, holomorphic, matrix-valued

function Fk(z) on U . Hence, by Theorem 3.4.7, there are non-singular, holomorphic, matrix-valued functions

F ′k(z) and F ′′k (z) defined on K ′ and K ′′ respectively, such that

Fk(z) = [F ′′k (z)]−1[F ′k(z)]
−1, ∀z ∈ K.

These matrices define isomorphisms λ′k : (O|K′)pk −→ (O|K′)pk and λ′′k : (O|K′′)pk −→ (O|K′′)pk , such that

λk = (λ′′k)
−1(λ′k)

−1 over K. In pictures, we have the diagram

0 (O|K′)pm · · · (O|K′)p (S |K′) 0

0 (O|K′)pm · · · (O|K′)p (S |K′) 0

0 (O|K′′)pm · · · (O|K′′)p (S |K′′) 0

0 (O|K′′)pm · · · (O|K′′)p (S |K′′) 0,

µ′m

λ′m

µ′1 µ′

λ′0 Id

µm

λm

µ1 µ

λ0 Id

νm

λ′′m

ν1 ν

λ′′0 Id

ν′m ν′1 ν′

(41)

where, as before, the mappings λ0, ..., λm are defined only on U ⊃ K ′∪K ′′. Moreover, the maps µ′, µ′1, ..., µ
′
m, ν

′, ν ′1, ..., ν
′
m

are the uniquely determined morphisms such that (41) is commutative when restricted to U . Upon restric-

tion to K = K ′ ∩ K ′′, rows 1 and 4 of (41) are isomorphic chains of syzygies lying over the identity map

IdK : S |K −→ S |K under the sheaf morphisms λ′′kλkλ
′
k : (O|K)pk −→ (O|K)pk . By construction however,

λ′′kλkλ
′
k is simply the identity map over K. Therefore the syzygies coincide identically over K and we have a

single terminating chain of syzygies over K ′ ∪K ′′, as required. �

Theorem 3.4.9. (Amalgamation of Syzygies Theorem). Let G ⊆ Cn be a simply-connected polydomain in

Cn, and let K ⊂ G be a compact set. There exists an open set U ⊆ Cn with K ⊂ U ⊂ U ⊂ G, such that any

coherent analytic sheaf S over G has a terminating chain of syzygies over U .

Proof. By the Riemann mapping theorem of one complex variable, we may assume that G is an open

(Euclidean) block4 in Cn. Choose U to be an open (Euclidean) block such that K ⊂ U ⊂ U ⊂ G, and

write U = U1 × · · ·Un, where Uk ⊂ C is a rectangle with coordinate zk. By Theorem 2.3.6, for any point

4That is, G = G1 × · · · ×Gn, where Gk := {zk ∈ C : ak < Re(zk) < bk, ck < Im(zk) < dk}.
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p ∈ G, there exists an open neighbourhood of p over which S admits a terminating chain of syzygies. We

therefore decompose the (Euclidean) block U into a finite number of (Euclidean) blocks such that S admits

a terminating chain of syzygies of each of these sub-blocks. Then by applying Lemma 3.4.8 iteratively, we

obtain a terminating chain of syzygies over all of U . The details of this construction are given in [26, p.

205–206] and omitted in the interests of brevity. �

Theorem 3.4.10. (Cartan). Let G ⊆ Cn be a simply-connected polydomain and S a coherent analytic

sheaf over G. Then for any relatively compact, simply-connected polydomain K ⊂ G,

(i) the sheaf S |K is generated by finitely many global sections in S (K).

(ii) Hq(K,S ) = 0 for all q ≥ 1.

Proof. By Theorem 3.4.9, S admits a terminating chain of syzygies over an open neighbourhood of K.

Over K the syzygy takes the form

· · · −→ (O|K)p1
µ1−−−−→ (O|K)p

µ−−−→ S |K −→ 0. (42)

Let ek ∈ Op(K) denote the canonical generators of (O|K)p. By the exactness of (42), S |K is generated by

the global sections µ(ek) and this proves (i). Moreover, since S admits a terminating chain of syzygies in an

open neighbourhood of K, Proposition 3.4.2 implies that Hq(K,S ) = 0 for all q ≥ 1, and this proves (ii). �



CHAPTER 4

Cartan’s Theorem B and its Consequences

In this chapter, we complete the proof of Cartan’s Theorem B for Stein spaces. In §4.1 we construct a suitable

Fréchet topology on the space of sections of a coherent analytic sheaf S over an analytic block Sν ⊂ X, where

X is a Stein space. This will allow us to approximate sections in S (X) by sections in S (Sν), c.f., Remark

3.3.4. In §4.2 the proof of Cartan’s Theorem B is given, together with its converse. We conclude this chapter

with a discussion of the Cousin problems in §4.3.

§4.1. Constructing the Seminorms and the Fréchet Space S (Å(S))

We remind the reader of the definition of a Fréchet space.

Definition 4.1.1. A complex topological vector space V with a Hausdorff topology is called a Fréchet space

if its topology is determined by an at most countable family of seminorms ρk : V −→ R, and V is complete

with respect to this topology.

Recall that a map ρ : V → R is called a seminorm if

(i) ρ is non-negative, i.e., ρ(x) ≥ 0 for all x ∈ V .

(ii) ρ is homogeneous, i.e., ρ(λx) = |λ| ρ(x) for all λ ∈ C, x ∈ V .

(iii) ρ satisfies the triangle inequality, i.e., ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ∈ V .

Remark 4.1.2. Fréchet spaces generalise the more familiar Banach spaces, where the norm is replaced with

a countable family of seminorms. One may also readily show that a Fréchet space is metrizable, i.e., it is

homeomorphic to a metric space. The distance function is defined by

d(x, y) :=
∞∑
k=1

1

2k
ρk(x− y)

1 + ρk(x− y)
.

The reader may wish to consult [37, p. 6] for further details.

Example 4.1.3. Given a domain G ⊆ Cn, we will consider the set of analytic functions f : G −→ C as a

Fréchet space when equipped with the topology of uniform convergence on compact subsets (see, e.g., [32, p.

91–92] for details).

Notational Remark 4.1.4. We fix the following notation throughout this section: we let X := (X,OX)

denote a complex analytic space and S a coherent analytic sheaf on X. We let (S, π) := (S, π,Q,W ) be an

analytic block in X and, unless otherwise stated, U and V will denote respective open neighbourhoods of S

and Q such that τ := π|U : U −→ V is a finite map.

59
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The purpose of this section is to construct good seminorms ‖ · ‖Q on S (S) which will behave well under an

exhaustion by analytic blocks. The existence (and uniqueness) of a Fréchet space structure on the space of

sections of a coherent analytic sheaf is non-trivial. Unfortunately, in the interests of brevity, we cannot detail

the rich theory behind this development. The interested reader may wish to consult [19, Chapter V.6] for

details. In this section, we prove the following theorem:

Theorem 4.1.5. Let (Sν , πν)ν≥1 be an exhaustion of X by analytic blocks. Then

(i) every complex vector space S (Sν) may be endowed with seminorms ‖ · ‖ν such that, with respect to

this topology, the space of global sections S (X), when restricted to Sν , is dense in S (Sν).

(ii) the restriction maps resν : S (Sν+1) −→ S (Sν) are bounded, i.e., for each ν ≥ 1, there exists a

constant Mν ∈ R>0 such that ‖resν(s)‖ν ≤Mν‖s‖ν+1.

(iii) if (sνj )j∈N is a Cauchy sequence in S (Sν), then for each ν ≥ 2, the restricted sequence (resν−1(sνj ))j∈N

has a limit in S (Sν−1).

(iv) if s ∈ S (Sν) satisfies ‖s‖ν = 0 then for each ν ≥ 2, resν−1(s) = 0.

By Theorem 3.1.32 the direct image T := τ∗(S |U ) is a coherent analytic sheaf on V . For some ` ≥ 1, part

(i) of Theorem 3.4.10 then informs us that there is a surjection of sheaves of analytic sheaves ΦQ,` : O`|Q −→
T |Q, and by part (ii) of Theorem 3.4.10 this induces a surjection of O(Q)–modules, which we also write as

ΦQ,` : O`(Q) −→ T (Q). Observe that since S = τ−1(Q), we have a canonical isomorphism of complex vector

spaces ϕ : S (S) −→ T (Q). We therefore make the following definition:

Definition 4.1.6. Maintaining the above notation we define ‖ · ‖Q : S (S) −→ R by

‖s‖Q := inf

{
max
z∈Q
|f(z)| : f ∈ O`(Q) and ΦQ,`(f) = ϕ(s)

}
. (43)

A seminorm of this form is referred to as a good seminorm.

We will need the following result. The proof is omitted in the interests of brevity.

Lemma 4.1.7. ([19, p. 118]). If M is a complex manifold and J is a coherent subsheaf of O` on M ,

1 ≤ ` < ∞, then, with respect to the topology of uniform convergence on compact subsets, the module of

sections J (M) is a closed vector subspace of O`(X).

Proposition 4.1.8. The map ‖ · ‖Q : S (S) −→ R defined in Definition 4.1.6 is a seminorm on S (S).

Moreover, if ‖s‖Q = 0 then the restriction of s to the analytic interior Å(S) vanishes.

Proof. The fact that (43) defines a seminorm is clear, and is essentially deduced from the fact that

f 7→ maxz∈Q |f(z)| satisfies the requirements of a seminorm1. The interesting part of the proposition is

therefore the second statement. Suppose that ‖s‖Q = 0. Then there exists a sequence (fj)j∈N such that

ΦQ,`(fj) = ϕ(s) and limj→∞maxz∈Q |fj(z)| = 0. Set h := f1 ∈ O`, and hj := h − fj ∈ ker(ΦQ,`) for

each j ∈ N. Then limj→∞maxz∈Q |h− hj | = 0, and in particular, limj→∞(hj |Q) = h|Q with respect to the

1One may also see this from the fact that (43) is simply the quotient seminorm on T (Q) = O`/ ker ΦQ,`. This observation

provides a clear insight as to why (43) does not define a norm. Indeed, if (43) is a norm then ker ΦQ,` is a closed subspace of O`,
but this is of course not true in general.
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topology of uniform convergence on compact sets. Since K er(ΦQ,`) is a coherent subsheaf of O`|Q, Lemma

4.1.7 informs us that ΦQ,`(h|Q̊) = 0. Therefore, ϕ(s)|Q̊ = ΦQ,`(h|Q) = 0, and since Å(S) = τ−1(Q̊), it follows

that the restriction of s to Å(S) is zero, as required. �

We will use the seminorm ‖ · ‖Q to define a distance on S (Å(S)). The above notation will be maintained.

Construction 4.1.9. Let (Qν)ν≥1 be an exhaustion of Q̊ ⊂ Cm by compact (Euclidean) blocks, with each

block having the same centre. That is, for each ν ≥ 1, Qν ⊂ Q̊ν+1, and Q̊ =
⋃
ν≥1Qν . Then for each ν ≥ 1,

the restriction of ΦQ,` to Qν induces a surjection of O(Qν)–modules ΦQν ,` : O`(Qν) −→ π∗(S |S)(Qν), and

we obtain a seminorm ‖ · ‖Qν : S (τ−1(Qν)) −→ R specified by the appropriate change of the formula (43).

Notational Remark 4.1.10. To avoid cumbersome notation we will write ‖ · ‖ν in place of ‖ · ‖Qν .

Definition 4.1.11. We define a function d : S (Å(S))×S (Å(S)) −→ R by

d(s1, s2) :=
∞∑
ν=1

1

2ν
· ‖s1 − s2‖ν

1 + ‖s1 − s2‖ν
.

Observation 4.1.12. Let us make the observation that if K ⊂ X is a compact set, then O`(K) is not a

good space to work with. Indeed, for K compact, O`(K) is normable, i.e., it is equipped with a norm, but it

is not complete with respect to this norm. If K ⊂ X is a domain, however, then O`(K) is not normable, i.e.,

it cannot be equipped with a norm, but it is complete.

Lemma 4.1.13. The function d defined in Definition 4.1.6 is a distance. Endowing S (Å(S)) with this

distance d, we obtain a Fréchet space (S (Å(S)), d).

Proof. The fact that d defines a distance follows from Proposition 4.1.8 and Remark 4.1.2. We need to

show d is a complete distance on S (Å(S)). To this end, let (sµ)µ∈N be a Cauchy sequence in S (Å(S)), and

let Q ⊂ Cm be the compact (Euclidean) block associated to S. Exhaust Q̊ by compact (Euclidean) blocks

(Qν)ν∈N, each with the same centre. For each ν, we may choose a bounded sequence (f jν )j∈N ∈ O`(Qν), such

that ΦQν ,`(f
j
ν ) = sj |π−1(Qν)∩S . By Montel’s theorem, there is a subsequence (also denoted by) (f jν )j∈N, which

converges uniformly on Qν−1 to some fν ∈ O`(Qν−1). Since ΦQν−1,`(fν+1)|Q̊ν−1
= ΦQν−1(fν)|Q̊ν−1

, we may

glue these fν together to obtain a global section f ∈ O`(Q) such that ΦQ,`(f)|Qν = ΦQν ,`(fν) = sj |π−1(Qν)∩S .

By then setting s := ΦQ,`(f), we obtain the desired limit, and so S (Å(S)) is complete, as required. �

Note that the distance d constructed from the good seminorms ‖·‖ν required two choices: we needed to choose

an exhaustion (Qν)ν≥1 of Q̊ and also choose a surjection ΦQ,`. The reader will be reassured to know that this

topology is independent of both of these choices. The following lemma informs us that this topology is not

dependent on the choice of exhaustion, surjection, and is also not changed if (S, π) is replaced with (S, ′π),

where ′π := (π, ϕ), for some holomorphic map ϕ : X −→ Cn. We first set up some notation:

Let (S, π) be an analytic block in X and let ϕ : X −→ Cn be a holomorphic map such that ϕ(S) is contained

in some compact (Euclidean) block Q∗ ⊂ Cn. Set ′π := (π, ϕ) : X −→ Cm × Cn and C′m := Cm × Cn, and

observe that S = ′π−1(Q×Q∗)∩U . Now choose open neighbourhoods ′U ⊂ X and ′V ⊂ C′m of S and Q×Q∗
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respectively, such that ′π|′U : ′U → ′V is finite. Fix an surjection of sheaves ′ΦQ,′` : O′`|Q×Q∗ → ′π∗(S |S) and

exhaust Q×Q∗ by the open sets (Q̊ν × Q̊∗ν)ν≥1. We denote by ′d be the associated distance on S (Å(S)).

Proposition 4.1.14. The topologies on S (Å(S)) induced by the distances d and ′d coincide.

Proof. Let e1, ..., e` be the canonical generators ofO`(Q). For each 1 ≤ k ≤ `, set ′ek := ′Φ−1
Q,′`◦ΦQ,`(ek) ∈

O′`(Q×Q∗) to be the preimage of ΦQ,`(ek) ∈ π∗(S |S)(Q) = ′π∗(S |S)(Q×Q∗) in O′`(Q×Q∗) under ′ΦQ,′`.

For f ∈ S (Qν), let ′f ∈ O(Qν ×Q∗ν) denote the holomorphic extension of f to Qν ×Q∗ν , constant along each

of the fibres {q} ×Q∗ν , q ∈ Qν . For each ν ≥ 1, we define C–linear operators O`(Qν) −→ O′`(Qν ×Q∗ν),

∑̀
k=1

fk · ek 7→
∑̀
k=1

′fk · ′ek.

The norms of these operators are bounded by a constant which does not depend on ν. In particular, the

identity map Id : (S (Å(S)), d) −→ (S (Å(S)), ′d) is continuous, and the Fréchet open mapping theorem2

informs us that this map is a homeomorphism. In other words, the topologies induced from the distances d

and ′d coincide, as required. �

Lemma 4.1.15. Let (S1, π1) � (S2, π2) be an inclusion of analytic blocks in X. There exists an analytic

block (S, π1) such that (S1, π1) � (S, π1) � (S2, π2).

Proof. Recall that by (S1, π1) � (S2, π2) it is understood that Cm2 := Cm1 × Cn for some n ∈ N,

π2 = (π1, ϕ) for some holomorphic map ϕ : X −→ Cn, and there exists a point q ∈ Cn such that Q1×{q} ⊂ Q2.

Set Q′ := Q2 ∩ (Cm1 × {q}) ⊂ Cm1 and denote by Q? the image of Q2 under the projection Cm2 −→ Cn.

We choose open neighbourhoods U ⊂ Å(S2) of S1 and V ⊂ Q′ of Q1 such that π1|U : U → V is finite, and

π−1
1 (Q1) ∩ U = S1. Choose a compact (Euclidean) block Q ⊂ Cm1 such that Q1 ⊂ Q̊ ⊂ Q ⊂ Q̊′. We then

obtain the desired analytic block (S, π1) by setting S := π−1
1 (Q) ∩ U . �

Proposition 4.1.16. Let (S1, π1) � (S2, π2) be an inclusion of analytic blocks in X. Then the restriction map

ρ : S (S2) −→ S (S1) is bounded. In other words, we may find a constant M ∈ R such that ‖ρ(s)‖1 ≤M‖s‖2.

Proof. The decomposition in Lemma 4.1.15 allows us to split the map ρ : S (S2) −→ S (S1) as the

composition of ρ1 : S (S2) −→ S (Å(S)) and ρ2 : S (Å(S)) −→ S (S1), where the maps are the obvious

restrictions. If Å(S) is equipped with the topology defined by π2, the map S (S2) −→ S (Å(S)) is continuous.

Similarly, if Å(S) is equipped with the topology defined by π1, the map S (Å(S)) −→ S (S1) is continuous.

By Proposition 4.1.14 these topologies coincide, and therefore the composition ρ = ρ2 ◦ ρ1 is continuous and

in particular, ρ is bounded. �

2The Fréchet open mapping theorem states that if X and Y are Fréchet spaces and T : X −→ Y is a continuous surjective

linear operator, T is an open map (see [63, Theorem 1.6]).
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Proposition 4.1.17. Let (S1, π1) � (S2, π2) be an inclusion of analytic blocks in X. For every Cauchy

sequence (sj)j∈N in S (S2), the restriction of sj to S (S1) converges to a unique limit s ∈ S (S1).

Proof. Let (S, π1) be the intermediate analytic block from Lemma 4.1.15 and decompose ρ : S (S2) →
S (S1) as in the proof of Proposition 4.1.16. Let (sj)j∈N be a Cauchy sequence in S (S2). The map ρ1 :

S (S2) −→ S (Å(S)) is uniformly continuous, so (ρ1(sj))j∈N is a Cauchy sequence in S (Å(S)). Since S (Å(S))

is complete, (ρ1(sj))j∈N converges to a unique limit t ∈ S (Å(S)), and by the continuity of ρ2 : S (Å(S)) −→
S (S1), the image of (ρ1(sj))j∈N converges to the unique limit ρ2(t) ∈ S (S1); setting s = ρ2(t) completes the

proof. �

All that remains is to prove statement (i) of Theorem 4.1.5. The proof of statement (i) requires a theorem of

Runge type for compact (Euclidean) blocks.

Notational Remark 4.1.18. For z = x+ iy, we set

R := {z ∈ C : a ≤ x ≤ b, c ≤ y ≤ d} .

Let K ′ be an arbitrary non-empty compact set in Cn−1. The set K := R × K ′ is a compact set in Cm =

C × Cm−1. Let z denote the coordinate of C and z′ = (z2, ..., zm) denote the coordinates for Cm−1 in the

decomposition Cm = C× Cm−1, we also set w = (z, z′) ∈ Cm.

Proposition 4.1.19. (Runge). For any ε > 0 and f ∈ O(K) there exists a polynomial p(w), with coefficients

holomorphic on K ′, such that supw∈K |f(w)− p(w)| < ε.

Proof. Assume that R 6= ∅. Choose an open rectangle E containing R and a function f̃ ∈ O(E ×K ′)
such that f̃ |K = f . Denote by ∂E the oriented boundary of E. By the Cauchy integral formula of one complex

variable, for all w = (z, z′) ∈ K,

f(w) =
1

2πi

∫
∂E

f(ζ, z′)

ζ − z
dζ. (44)

The function λ(ζ, w) = (2πi(ζ − z))−1f(ζ, z′) in the integrand of (44) is uniformly continuous on the com-

pact set ∂E × K. In particular, for any ε > 0, we may choose δ > 0 such that |ζ − ζ ′| < δ implies

|λ(ζ ′, w)− λ(ζ, w)| ≤ 1
2Lε, where L denotes the circumference of E.

Now partition ∂E into n intervals Iν , 1 ≤ ν ≤ n, each of which has length δν < δ, and for each interval Iν ,

choose a point ζν ∈ Iν . Then λ(ζν , w) is holomorphic on (C\{ζν})×K, and we can approximate (44) by the
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Riemann sum g(w) :=
∑n

ν=1 λ(ζν , w)δν . Observe that

sup
w∈K
|f(w)− g(w)| = sup

w∈K

∣∣∣∣∣ 1

2πi

∫
∂E

f(ζ, z′)

ζ − z
dζ −

n∑
ν=1

λ(ζν , w)δν

∣∣∣∣∣
= sup

w∈K

∣∣∣∣∣
n∑
ν=1

∫
Iν

[λ(ζ, w)− λ(ζν , w)] dζ

∣∣∣∣∣
≤

n∑
ν=1

∫
Iν

sup
w∈K

∣∣λ(ζ, w)− λ(ζ ′, w)
∣∣ dζ

≤
n∑
ν=1

ε

2L
δν =

ε

2
. (45)

For each point ζν ∈ Iν , choose a disk ∆ν ⊂ C such that R ⊂ ∆ν and ζν 6∈ ∆ν . Let Tν ∈ C[z] denote the

Taylor polynomial obtained from the Taylor expansion of (2πi(ζν − z))−1δν expanded about the centre of ∆ν

such that

sup
z∈R

∣∣(2πi(ζν − z))−1δν − Tν(z)
∣∣ ≤ 1

2nLMν
ε, (46)

where Mν := maxz′∈K′ |f(ζν , z
′)|. The function p(w) :=

∑n
ν=1 f̃(ζν , z

′)Tν(z) is then a polynomial in z with

coefficients holomorphic on K ′. Then from (45) and (46) we have the estimate

sup
w∈K
|f(w)− p(w)| ≤ sup

w∈K
|f(w)− g(w)|+ sup

w∈K
|g(w)− p(w)|

(45)

≤ ε

2
+ sup
w∈K
|g(w)− p(w)|

=
ε

2
+ sup
w∈K

∣∣∣∣∣
n∑
ν=1

λ(ζν , z
′)δν −

n∑
ν=1

f(ζν , z
′)Tν(z)

∣∣∣∣∣
≤ ε

2
+

n∑
ν=1

sup
z′∈K′

∣∣f(ζν , z
′)
∣∣ · sup

z∈R

∣∣(2πi(ζν − z))−1 − Tν(z)
∣∣

(46)

≤ ε

2
+

n∑
ν=1

Mν ·
1

2nLMν
ε =

ε

2
+
ε

2
= ε,

as required. �

Corollary 4.1.20. Given ε > 0 and any f ∈ O(Q), where Q ⊂ Cm is a compact block, there exists a

polynomial p(z) such that supz∈Q |f(z)− p(z)| < ε.

Proof. We proceed by induction on m. For m = 1, the compact block Q ⊂ C is the rectangle R

of Proposition 4.1.19. In this case, the compact set K ′ is a point, and the polynomial with coefficients

holomorphic on K ′ is just a constant coefficient polynomial. Now suppose that n > 1. For Q ⊂ Cm,

we write Q = R × Q′, where R ⊂ C is a compact rectangle, and Q′ ⊂ Cm−1 is a compact block. Ap-

plying Proposition 4.1.19, we find a polynomial p̃(w) = p̃(z, z′) :=
∑n

ν=0 fν(z′)zν , where fν ∈ O(Q′),

such that supw∈Q |f(w)− p̃(w)| < 1
2ε. The induction hypothesis informs us of the existence of polynomi-

als gν ∈ C[z′] such that supz′∈Q′ |fν(z′)− gν(z′)| ≤ ε
2(n+1)N , where N := max0≤ν≤n supz∈R |zν |. Setting
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p(w) =
∑n

ν=0 gν(z′)zν , we see that

sup
w∈Q
|f(w)− p(w)| ≤ sup

w∈Q
|f(w)− p̃(w)|+ sup

w∈Q
|p̃(w)− p(w)|

≤ ε

2
+ sup
w∈Q

∣∣∣∣∣
n∑
ν=0

fν(z′)zν −
n∑
ν=0

gν(z′)zν

∣∣∣∣∣
≤ ε

2
+

n∑
ν=0

sup
w∈Q

∣∣fν(z′)− gν(z′)
∣∣ · max

0≤ν≤n

(
sup
z∈R
|zν |
)

≤ ε

2
+

ε

2(n+ 1)N
·N

=
ε

2
+
ε

2
= ε,

as required. �

Now for an inclusion of analytic blocks (S1, π1) � (S2, π2), Lemma 4.1.15 provides us an intermediate analytic

block (S, π1). Let U2 and V2 be the open neighbourhoods of S2 andQ2 respectively, such that π2|U2 : U2 → V2 is

finite. The surjective morphism of sheaves ΦQ2,`2 : O`2 |Q2 −→ (π2)∗(S |U2)|Q2 induces a map α2 : O`2(Q2) −→
S (S2). The restriction of ΦQ2,`2 to the intermediate block S yields a map ΦQ,`2 : O`2 |Q −→ (π2)∗(S |U2)|Q
and since (π2)∗(S |U2)|Q ∼= S (S1), the map ΦQ,`2 determines a C–linear surjection α : O`2(Q) −→ S (S)

together with an associated seminorm ‖ · ‖S on S (S).

Lemma 4.1.21. Maintain the notation in the above paragraph. The restriction of S (S2) to S is dense in

S (S).

Proof. By construction, we have the following commutative diagram

O`2(Q2) S (S2)

O`2(Q) S (S)

α2

α

ρ1res

where the vertical maps are given by restriction. By Corollary 4.1.20, O`2(Q2) is dense in O`(Q). Therefore,

since all maps in the above diagram are continuous, S (S2)|S is dense in S (S) as claimed. �

We now show that, for an inclusion of analytic blocks (S1, π1) � (S2, π2), we may choose the intermediate

analytic block (S, π1) such that the restriction map ρ2 : S (S) −→ S (S1) is a surjection.

Lemma 4.1.22. Let (S1, π1) � (S2, π2) in X, and let S be the intermediate analytic block from Lemma

4.1.15. There exists a compact set S̃ ⊂ X such that S̃ ∩ S1 = ∅ and S = S1 ∪ S̃.

Proof. Let ϕ : X −→ Cn be the holomorphic map in the definition of an inclusion of analytic blocks, and

let Q := (Q1 × Cn) ∩Q2. Then from the proof of Lemma 4.1.15, we see that the intermediate block is given

by S = π−1
1 (Q1) ∩ S2. Since S1 ⊂ S2 and S1 ⊂ π−1

1 (Q1), we see that S1 ⊂ S. Moreover, we may choose an

open neighbourhood U of S1 such that S1 = π−1
1 (Q1)∩U and in particular the set S̃ := S\S1 is compact. �
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Let us note that the space of sections of a coherent sheaf on a compact set has no good topology. For example,

the space of holomorphic functions on the closed disk is a normed space, but is not complete. The Fréchet

topology considered here is defined for domains, and we must therefore extend the compact (Euclidean) blocks

Q1, Q, and Q2, to domains Q̂1, Q̂, and Q̂2. Similarly, S1, S, and S2 are extended to Ŝ1, Ŝ, and Ŝ2. This

extension is carried out in such a way that
̂̃
S ∩ Ŝ1 = ∅. Moreover, by Lemma 4.1.13, S (Å(Ŝ)) and S (Å(Ŝ1))

carry Fréchet topologies such that the restriction map S (Å(Ŝ)) −→ S (Å(Ŝ1)) is a surjective continuous map

(see also [19, p. 164]).

Lemma 4.1.23. Let (S1, π1) � (S2, π2) be an inclusion of analytic blocks in X. Then S (S2)|S1 is dense in

S (S1).

Proof. Fix a section s ∈ S (S1). The map ρ2 : S (S) −→ S (S1) is surjective, so there exists a

section s1 ∈ S (S) such that ρ2(s1) = s1|S1 = s. Extending the blocks in the manner described in the

preceeding paragraph, we can extend s1 to a section ŝ1 ∈ S (Ŝ). Now there exists a sequence (sj)j∈N ⊂ S (Ŝ2)

such that sj |Ŝ −→ ŝ1 in S (Ŝ). The restriction map S (Å(Ŝ)) −→ S (Å(Ŝ1)) is continuous in the Fréchet

topology, so sj |Å(Ŝ1)
−→ ŝ1|Å(Ŝ1)

in S (Å(Ŝ1)). From the definition of a good seminorm however, we see that

sj |S1 −→ ŝ1|S1 = s1|S1 = s, as required. �

Proposition 4.1.24. Let (Sν , πν)ν≥1 be an exhaustion of X by analytic blocks. For each ν ≥ 1, the restriction

of S (X) to Sν is dense in S (Sν).

Proof. It suffices by Lemma 4.1.23 to show that S (X)|S1 is dense in S (S1). Let s ∈ S (S1), δ ∈ R>0,

and choose a sequence (δν)ν≥1 ∈ R>0 such that
∑

ν≥1 δν < δ. By Lemma 4.1.23 we may construct a sequence

sν ∈ S (Sν) such that s1 = s, and for each ν ≥ 1, ‖resν(sν+1) − sν‖ν < δν . The sequence (resν+1(sµ))µ>ν is

then a Cauchy sequence in S (Sν+1), and by Proposition 4.1.14 this sequence has a unique limit tν ∈ S (Sν).

By Proposition 4.1.16 each restriction map is bounded, and resν(tν+1) is also a limit of the sequence resν(sµ).

By Proposition 4.1.8 these limits tν and tν+1 are equal on Å(Sν). Since X is exhausted by the Å(Sν), we

may glue together each tν to obtain a global section t ∈ S (X) such that resν(t) = tν for each ν ≥ 1. We now

simply consider the estimate

‖res1(t)− s‖1 =

∥∥∥∥∥t1 − res1(sµ) +

µ−1∑
ν=1

(res1(sν+1)− res1(sν))

∥∥∥∥∥
1

≤ ‖t1 − res1(sµ)‖1 +

µ−1∑
ν=1

‖res1(sν+1)− res1(sν)‖1

< ‖t1 − res1(sµ)‖1 +
ν−1∑
µ=1

δµ → δ,

as µ→∞, and this completes the proof. �

§4.2. Cartan’s Theorem B for Stein spaces

In this section, we complete the proof of Cartan’s theorem B for Stein spaces. We remind the reader of the

statement.



§4.2. CARTAN’S THEOREM B FOR STEIN SPACES 67

Theorem 4.2.1. Let X be a Stein space, and S a coherent analytic sheaf on X. Then for each q ≥ 1,

Hq(X,S ) = 0.

Proof. By Proposition 3.3.16 we may exhaust X by analytic blocks (Sν , πν)ν≥1. In the same manner as

the proof of Proposition 3.3.3, we have the commutative diagram

0 S (X) S 0(X) S 1(X) · · · S q−1(X) S q(X) · · ·

0 S (Sν) S 0(Sν) S 1(Sν) · · · S q−1(Sν) S q(Sν) · · ·

ı d0 d1 dq−1

resν resν resν resν resν

ı dν0 dν1 dνq−1

Via the inclusion map ı, we identify S (X) with a subset of S 0(X). By Proposition 3.3.3, Hq(X,S ) = 0 for

all q ≥ 2, so we need only show that H1(X,S ) = 0. That is, we need to show that for any α ∈ ker d0, we may

find some β ∈ S 0(X) such that d0(β) = α. We construct two sequences βν ∈ S 0(Sν), δν ∈ S (Sν) = ker(dν0)

such that

(i) dν0(βν) = resν(α),

(ii) resν−1(βν+1 + δν+1) = resν−1(βν + δν).

From the sequence (βν+1 +δν+1)ν≥1 we construct a global section β ∈ S 0(X) such that resν(β) = resν(βν+1 +

δν+1) and for each ν ≥ 1, resν(d0(β)) = dν0(resν(βν+1)) + dν0(δν+1) = resν(α), i.e., d0(β) = α.

Let us proceed by induction to construct these sequences. Let β′ν ∈ S (Sν) denote the sequence such that

dν0(β′ν) = resν(α), given to us by Proposition 3.3.14. Set β1 = β′1, and assume that β1, ..., βν have been chosen

to satisfy (i). Let γ′ν := resν(β′ν+1)− βν . We observe that

dν0(γ′ν) = dν0(resν(β′ν+1)− dν0(βν)

= resν(dν+1
0 (β′ν+1))− dν0(βν) (47)

= resν(α)− resν(α) = 0,

where (47) follows from the commutativity of the above diagram, and so γ′ν ∈ ker dν0 = S (Sν). By Proposition

4.1.24, for each ν ≥ 1, we can choose a global section γν ∈ S (X) such that

‖γ′ν − resν(γν)‖ν ≤ 2−ν . (48)

Set βν+1 := β′ν+1 − resν+1(γν) ∈ S 0(Sν+1). Then

dν+1
0 (βν+1) = dν+1

0 (β′ν+1)− dν+1
0 (resν+1(γν))

= resν+1(α)− resν+1(d0(γν)) (49)

= resν+1(α), (50)

where (49) follows from the commutativity of the above diagram, and (50) follows from the fact that S (X) =

ker(d0). To construct the sequence δν ∈ S (Sν−1), we define, for each ν ≥ 1, sequences (sνj )j∈N ⊂ S (Sν−1),

sνj := resν(βν+j)− βν .
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We claim that these sequences are Cauchy in the topology induced from the seminorms ‖ · ‖ν . Assuming this

claim for the moment, observe that by Proposition 4.1.17 each restricted sequence resν−1(sνj ) ∈ S (Sν−1) has

a limit δν ∈ S (Sν−1). By Proposition 4.1.16 the restriction maps are bounded, and therefore resν−1(sν+1
j )

converges to resν−1(δν+1) as j →∞. We observe that sνj − resν(sν+1
j−1 ) = res(βν+1)−βν , and since resν−1(sνj −

sν+1
j−1 )→ resν−1(δν − δν+1) as j →∞, we have

‖resν−1(δν − δν+1)− resν−1(βν+1 − βν)‖ν−1 = 0.

By Proposition 4.1.8, resν−1(βν+1 + δν+1) = resν−1(βν + δν), and this proves (ii).

Let us now verify that resν(sνj ) is a Cauchy sequence in S (Sν). Indeed, from (48) we see that

‖resν(βν+µ)− resν(βν+µ−1)‖ν ≤ ‖resν+µ−1(βν+µ)− resν+µ−1(βν+µ−1)‖ν+µ−1 ≤ 2ν+µ−1.

Therefore, for all i < j, we simply observe that

‖sνj − sνi ‖ν ≤
j∑

µ=i+1

21−µ−ν ≤ 2−1−ν−i,

so sνj ∈ S (Sν) is a Cauchy sequence, as claimed. �

The following corollary is immediate.

Corollary 4.2.2. Let 0 −→ R −→ S −→ T −→ 0 be an exact sequence of coherent analytic sheaves over

a Stein space X. Then the sequence 0 −→ R(X) −→ S (X) −→ T (X) −→ 0 at the level of sections is also

exact.

It turns out that the converse of Cartan’s Theorem B is also true. That is, X is a Stein space if and only if

X is a B–space. The remainder of this section is devoted to the proof of this fact.

Definition 4.2.3. A map σ : X → N0 is called a cycle on X if the set-theoretic support supp(σ) :=

{x ∈ X : σ(x) 6= 0} is a discrete set in X.

Definition 4.2.4. Given any cycle σ, there is an associated analytic ideal sheaf Q(σ) which is defined

stalkwise by

Q(σ) :=
⋃
x∈X

Q(σ)x,

where Q(σ)x := m
σ(x)
x , and mx is the maximal ideal in OX,x. Note that for any x 6∈ supp(σ), the stalk of

Q(σ) at x is Q(σ)x = OX,x.

Theorem 4.2.5. The ideal sheaf Q(σ) is coherent.

Proof. By (ii) of Proposition 2.3.11, it suffices to show that Q(σ) is an ideal sheaf of finite type. The

identity section 1 ∈ Q(σ)(X\supp(σ)) = O(X\supp(σ)) generates Q(σ) over X\supp(σ). For a point p ∈
supp(σ), choose a local model (U,OU ) such that U ∩ supp(σ) = {p} and OU ∼= (OG/J ) |U , where G is a

domain in Cn and J is an ideal sheaf of finite type. Let z = (z1, ..., zn) denote the coordinates of Cn, centred

at p, and let J = (j1, ..., jn) ∈ Nn0 denote a multi-index with |J | = σ(p). The monomials qJ := zJ generate

the ideal m(OG,p)σ(p), and therefore the equivalence classes qJ ∈ OG/J generate the ideal m(OG/J )
σ(p)
p =
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m(OU,p)σ(p) = m
σ(p)
p . Since the monomials qJ generate the stalks of OG over G\{p}, the functions qJ |U ∈ O(U)

generate each stalk OU,x, x ∈ U\{p}. Since U ∩ supp(σ) = {p}, Q(σ)x = OU,x for all x ∈ U\{p}, so Q(σ)|U
is generated by the functions qJ |U , and Q(σ)|U is of finite type. �

Lemma 4.2.6. Let σ be a cycle on X with OX(X) −→ (OX/Q(σ))(X) a surjection. Suppose that to every

point p ∈ supp(σ), there is an assigned germ gp ∈ OX,p. Then there exists a function f ∈ OX(X) such that

fp − gp ∈ mσ(p)
p , ∀p ∈ supp(σ).

Proof. Let ρ : OX −→ OX/Q(σ) denote the quotient map. Observe that since supp(OX/Q(σ)) =

supp(σ), define a global section s of OX/Q(σ) by

s(p) :=

gp, ∀p ∈ supp(σ),

0, otherwise.

Since the associated map ρX : OX(X) −→ (OX/Q(σ))(X) on global sections is surjective, choose f ∈ OX(X)

such that ρX(f) = s. In particular, for each p ∈ supp(σ), ρ(fp) = ρ(gp), i.e., fp − gp ∈ (K er(ρ))p = Q(σ)p =

m
σ(p)
p , for all p ∈ supp(σ). �

Corollary 4.2.7. Let X be a complex analytic space such that for every coherent ideal sheaf J ⊂ OX , we

have H1(X,J ) = 0. Then for any discrete sequence (xk)k≥0 in X, and any sequence (λk)k≥0 in C, there exists

a function f ∈ OX(X) such that f(xk) = λk for all k ≥ 0.

Proof. Define a cycle

σ(x) :=

1, x = xk, k ≥ 0,

0, otherwise,

i.e., the support of σ is exactly the sequence (xk)k≥0, and set gxk ∈ OX,p to be just λk, for each k ≥ 0. By

Lemma 4.2.6, we can choose a global section f ∈ OX(X) such that fxk − gxk = fxk − λk ∈ mxk . But this

exactly says that for each k ≥ 0, f(xk) = λk, as required. �

Corollary 4.2.8. Let X be a complex analytic space such that H1(X,J ) = 0 for any coherent ideal sheaf

J ⊂ OX . Let k denote the embedding dimension of X. Then there are k holomorphic functions f1, ..., fk ∈
OX(X) whose germs (f1)p, ..., (fk)p ∈ OX,p generate mp as an OX,p–module.

Proof. Let (g1)p, ..., (gk)p ∈ OX,p be the germs which generate mp. Define a cycle σ : X −→ N0 by

setting

σ(x) :=

2, x = p,

0, otherwise.

By Lemma 4.2.6, there exist fj ∈ OX(X) such that (fj)p − (gj)p ∈ m2
p for each 1 ≤ j ≤ k. Hence, the images

of each (fj)p in mp/m
2
p generate the complex vector space mp/m

2
p. We then simply apply Nakayama’s lemma3

to conclude that (f1)p, ..., (fk)p generate OX,p as an OX,p–module. �

3Let R be a Noetherian ring with maximal ideal m and suppose that M is a finitely generated R–module. Then the elements

x1, ..., xp ∈ M generate the R–module M if and only if their equivalence classes x1, ..., xp ∈ M/mM generate the R/m–vector

space M/mM (see, e.g., p. 22 of [1, p. 22], [26, p. 72]).
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Theorem 4.2.9. Let X be a B–space, i.e., for any coherent analytic sheaf S on X, Hq(X,S ) = 0 for all

q ≥ 1. Then X is a Stein space.

Proof. Suppose that X is a B–space, then for any coherent ideal sheaf J ⊂ OX , it is clear that

H1(X,J ) = 0. By Theorem 4.2.5, Q(σ) is a coherent ideal sheaf, and so H1(X,Q(σ)) = 0. In partic-

ular, the surjectivity assumption of Lemma 4.2.6 is satisfied. Then from Corollary 4.2.7, for any discrete

sequence (xk)k≥0 in X, we choose f ∈ OX(X) such that f(xk) = k. We claim that X is holomorphi-

cally convex. To see this, let K ⊂ X be a compact set. For any f ∈ OX(X), the continuity of f ensures

that supz∈K |red(f)(z)| < ∞. By Lemma 4.2.6 for any infinite discrete sequence (xk)k≥0, we may choose

f ∈ OX(X) such that supk≥0 |f(xk)| =∞. The holomorphically convex hull K̂ can therefore not contain any

infinite discrete set. To conclude that K̂ is compact, we need only justify that K̂ is closed, but this is (i)

of Lemma 2.1.8. Let us now show that X is holomorphically separable. Indeed, we simply observe that for

distinct x, y ∈ X, Corollary 4.2.7 permits us to choose f ∈ OX(X) such that f(x) = 1 and f(y) = 0. Finally,

existence of globally-defined coordinate functions is exactly Corollary 4.2.8. �

§4.3. The Cousin Problems

In this section, we discuss the Cousin problems, which were first proposed by P. Cousin in [11]. These problems

are the higher-dimensional analogue of the Mittag-Leffler and Weierstrass problems of one complex variable.

We assume throughout this section that X := (X,OX) is a reduced complex analytic space.

Definition 4.3.1. The sheaf KX of meromorphic functions is the sheaf associated to the presheaf of rings of

fractions

U 7−→ OX(U) [A (U)]−1,

where A (U) denotes the set of all elements f ∈ OX(U) such that fx ∈ OX,x is not a zero-divisor for all x ∈ U .

For an open set U ⊆ X, elements of KX(U) are called meromorphic functions (on U).

The First Cousin Problem. Let U = (Uλ)λ∈Λ an open cover of X. For each λ ∈ Λ, let gλ ∈ KX(Uλ) be a

meromorphic function, and suppose that for each pair µ, λ ∈ Λ, the function

fλµ := gλ − gµ

is holomorphic on Uλ ∩ Uµ. The first Cousin problem asks for the existence of a meromorphic function

f ∈ KX(X) such that f − gλ ∈ OX(Uλ) for each λ ∈ Λ. If such a meromorphic function can be found on X,

we say that the first Cousin problem is solvable on X.

Cartan’s theorem B informs us that the first Cousin problem is always solvable on a Stein space.
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Theorem 4.3.2. The first Cousin problem is solvable on a Stein space X.

Proof. The solvability of the first Cousin problem is equivalent to the existence of a surjective map

KX(X) −→ (KX/OX)(X). Indeed, if we recall the properties of quotient sheaves, a global section of KX/OX
is specified by an open cover U = (Uλ)λ∈Λ of X, and a collection gλ ∈ KX(Uλ) such that gλ−gµ ∈ OX(Uλ∩Uµ).

The exact sequence of sheaves

0 −→ OX
Φ−−−→ KX

Ψ−−−→ KX/OX −→ 0

induces a long exact sequence on cohomology,

· · · −→ Hq(X,OX)
Φ?−−−→ Hq(X,KX)

Ψ?−−−→ Hq(X,KX/OX)
δ−−→ Hq+1(X,OX) −→ · · · .

In particular, we consider the following portion of the above sequence:

· · · −→ KX(X)
Ψ?−−−→ (KX/OX)(X)

δ−−→ H1(X,OX)
Φ?−−−→ H1(X,KX) −→ · · · .

By Theorem 4.2.1, H1(X,OX) = 0, and therefore Ψ∗ : KX(X) −→ (KX/OX)(X) is surjective, and the first

Cousin problem is solvable. �

Remark 4.3.3. Note that the first Cousin problem is solvable on any space X for which H1(X,OX) = 0. In

particular, this is true for CPn, all projective rational manifolds, and compact Kähler manifolds whose first

Betti number is zero (see, e.g., [19, p. 137] and the references therein).

Definition 4.3.4. Let X be a complex analytic space. We denote by O∗X the sheaf of invertible elements of

OX . That is, O∗X is the sheaf associated to the presheaf U 7→ O∗X(U), where O∗X(U) is the set of invertible

elements of OX(U). Similarly, we denote by K ∗
X the sheaf of units of KX .

The Second Cousin Problem. Let U = (Uλ)λ∈Λ an open cover of X. For each λ ∈ Λ, let gλ ∈ K ∗
X(Uλ) be

a meromorphic function. Suppose that for each pair µ, λ ∈ Λ, the function

fλµ :=
gλ
gµ

is a non-zero holomorphic function on Uλ ∩ Uµ. The second Cousin problem asks for the existence of a mero-

morphic function f ∈ K ∗
X(X) such that

f

gλ
∈ O∗X(Uλ) for each λ ∈ Λ. If such a meromorphic function can be

found on X, we say that the second Cousin problem is solvable on X.

Unlike the first Cousin problem, the second Cousin problem is not always solvable on a Stein space. Indeed,

there is a topological obstruction measured by the first Chern class. To discuss this topological obstruction,

we introduce the following important class of sheaves:
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Definition 4.3.5. Let R be an analytic sheaf on X. We say that R is a locally free sheaf if for any point

x ∈ X, there is an open neighbourhood U ⊂ X of x and a positive integer p, such that R|U ∼= OpX |U . If this

is not only true locally, but globally also, i.e., we may take U = X, then R is said to be a free sheaf. The

positive integer p such that Rp|U ∼= OpX |U is referred to as the rank of R over U . A locally free sheaf of rank

p = 1 is called an invertible sheaf.

Note that if X is connected, then the rank is the same on each open set, and we, therefore, omit any mention

of the open set U .

To elaborate on why the terminology invertible sheaf is used, let us note the following elementary properties

of invertible sheaves (see, e.g., [28, p. 143]):

· If V is an invertible sheaf whose dual sheaf is denoted by V ∗, then V ⊗ V ∗ = OX .

· If V1 and V2 are two invertible sheaves, then V1 ⊗ V2 is an invertible sheaf.

Definition 4.3.6. The Picard group of X, denoted by Pic(X), is the set of all (isomorphism classes of)

invertible sheaves on X, equipped with a multiplication given by the tensor product.

The Picard group admits the following characterisation in terms of sheaf cohomology:

Theorem 4.3.7. There is an isomorphism

Pic(X) ∼= H1(X,O∗X).

Proof. We define a map from Pic(X) to H1(X,O∗X) as follows. Choose an open cover U := (Uλ)λ∈Λ of

X, and let Pic(U) be the set of all isomorphism classes of invertible sheaves which are trivialised over each Uλ.

That is, if V ∈ Pic(U), for each λ ∈ Λ, there are isomorphims ϕλ : OUλ −→ VUλ , and for any pair λ, µ ∈ Λ,

we may define transition maps gλµ : OUλ∩Uµ −→ OUλ∩Uµ , gλµ := ϕµ ◦ϕ−1
λ ∈ O

∗
X(Uλ ∩Uµ). It is easy to verify

that gλµ ◦ gµλ = 1,

gλµ ◦ gµη ◦ gηλ = 1,

i.e., (gλµ) defines a Ĉech 1–cocycle. The map Pic(U) −→ Ĥ
1
(U,O∗X) is then defined by V 7→ (gλµ).

Let us show that this map does not depend on the choice of isomorphisms (ϕλ)λ∈Λ. Indeed, let (ψλ)λ∈Λ denote

another collection of isomorphisms ψλ : OUλ −→ VUλ . The ratio ψλ/ϕλ is given by some hλ ∈ O∗X(Uλ), and

therefore, the transition maps defined by (ψλ)λ∈Λ are given by

g̃λµ :=
ψλ
ψµ

=
ϕλ
ϕµ
· hλ
hµ

= gλµ ·
hλ
hµ
.

Since hλ ◦ h−1
µ is a Ĉech coboundary however, g̃λµ and gλµ define the same element of Ĥ

1
(U,O∗X).

Now suppose that we have another open cover V over X that trivialises V . By the above argument, we can

define a map Pic(V) −→ Ĥ
1
(V,O∗X). Let D denote the common refinement of U and V. The trivialisation

of V over U induces a trivialisation of V over D, given simply by restriction. Similarly, the trivialisation

of V over V induces a trivialisation of V over D, again by restriction. We then obtain homomorphisms

Ĥ
1
(U,O∗X) −→ Ĥ

1
(D,O∗X) and Ĥ

1
(V,O∗X) −→ Ĥ

1
(D,O∗X) which the diagram
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Ĥ
1
(U,O∗X) Ĥ

1
(V,O∗X)

Ĥ
1
(D,O∗X)

commutative. Hence, since we have a map Pic(U) −→ Ĥ
1
(U,O∗X) for each open cover, we may take an

inductive limit, and this yields a map Pic(X) −→ H1(X,O∗X).

Now, to define a map H1(X,O∗X) −→ Pic(X). Let α ∈ Ĥ
1
(X,O∗X), we observe that since H1(X,O∗X) is an

inductive limit of Ĥ
1
(U,O∗X) over all open covers U, we may choose an open cover U and a Ĉech 1–coycle

(gλµ) in Ĥ
1
(U,O∗X) that represents the isomorphism class α. We then construct an invertible sheaf V in the

obvious way whose transition maps are (gλµ) with respect to the open cover U. �

Definition 4.3.8. A Cartier divisor on X is a global section of the quotient sheaf K ∗
X/O∗X , where K ∗

X

denotes the sheaf of units of KX .

Note that a Cartier divisor on X is specified by an open cover (Uλ)λ∈Λ of X, and a collection gλ ∈ K ∗
X(Uλ)

such that
gλ
gµ
∈ O∗X(Uλ ∩ Uµ).

Proposition 4.3.9. The second Cousin problem is solvable on X if the Picard group of X is trivial, i.e.,

Pic(X) = 0.

Proof. In a similar manner to the proof of Theorem 4.3.2, we need to show that there is a surjective

map ψ∗ : K ∗
X(X) −→ (K ∗

X/O∗X)(X). To this end, if Pic(X) = 0, then by Theorem 4.3.7 H1(X,O∗X) = 0.

The exact sequence

1 −→ O∗X
ϕ−−−→ K ∗

X
ψ−−−→ K ∗

X/O∗X −→ 0

induces an exact sequence on cohomology

1 −→ O∗X(X)
ϕ∗−−−−→ K ∗

X(X)
ψ∗−−−−→ (K ∗

X/O∗X)(X)
δ1−−−→ H1(X,O∗X) −→ · · · .

Since H1(X,O∗X) = 0, ψ∗ is a surjection, and the second Cousin problem is solvable. �

Lemma 4.3.10. The exponential sequence of sheaves

0 −→ Z 2πi−−−−→ OX
exp−−−−→ O∗X −→ 1

is exact.

Proof. The map exp : OX → O∗X is surjective. Indeed, it suffices to show that this is true on stalks.

To this end, fix a point x ∈ X, and let f ∈ O∗X,x. Choosing a branch of the logarithm in a sufficiently

small neighbourhood of x, yields an analytic function log(f) ∈ OX,x. It is clear that exp(log(f)) = f in this

neighbourhood of x. Let K er(exp) denote the kernel sheaf of the exponential map. We claim that K er(exp)

is the constant sheaf 2πiZ. It is immediate that 2πiZ is a subsheaf of K er(exp). We therefore concern

ourselves only with showing that K er(exp) ⊂ 2πiZ. As before, fix a point x ∈ X, and let f ∈ OX,x such that

exp(f) = 1. Multiplying f by an appropriate integral multiple of 2πi, we may assume that f ∈ mx, i.e., we
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may assume that f(x) = 0. The power series expansion of exp(z) yields an analytic function g ∈ OX,x such

that exp(f) = 1 + f − g · f2. Since exp(f) = 1, proceeding inductively, we observe that

f = g · f2 = · · · = gk · fk+1 ∈
∞⋂
k=1

mk
x = {0}, (51)

where the last equality follows from (ii) of (1). Hence, we see that f = 0, and therefore K er(exp) = 2πiZ, as

required. �

We now how two exact sequences:

1 −→ O∗X −→ K ∗
X −→ (K ∗

X/O∗X) −→ 0

and

0 −→ Z 2πi−−−−→ OX
exp−−−−→ O∗X −→ 1.

These sequences induces the following exact sequences of sheaf cohomology groups:

· · · → Hq(X,O∗X)→ Hq(X,K ∗
X)→ Hq(X,K ∗

X/O∗X)
δq−−−→ Hq+1(X,O∗X) −→ · · ·

and

· · · −→ Hq+1(X,Z)→ Hq+1(X,OX)→ Hq+1(X,O∗X)
δ̃q+1−−−−−→ Hq+2(X,Z) −→ · · ·

respectively. By combining the connecting homomorphisms δq and δ̃q+1, we obtain a map

cq+1 : Hq(X,K ∗
X/O∗X) −→ Hq+2(X,Z); D 7→ δ̃q+1 ◦ δq(D). (52)

Definition 4.3.11. If q = 1 in (52), we call the image of Cartier divisorD, under the map c1 : (K ∗
X/O∗X)(X) −→

H2(X,Z), the first Chern class of D.

Theorem 4.3.12. Let X be a complex analytic space with H1(X,OX) = 0. The second Cousin problem is

solvable on X if and only if c1(D) = 0 for all Cartier divisors D.

Proof. For the second Cousin problem to be solvable, we require that the map

ψ : K ∗
X(X) −→ (K ∗

X/O∗X)(X)

is surjective. We have the exact sequence

K ∗
X(X)

ψ∗−−−−→ (K ∗
X/O∗X)(X)

δ1−−−→ H1(X,O∗X).

Hence, for a Cartier divisor D, D ∈ Im(ψ∗) if and only if δ1(D) = 0. In particular, this implies that

δ̃2 ◦ δ1(D) = 0. If H1(X,OX) = 0, then δ̃2 is injective, which proves the converse. �

Remark 4.3.13. It is not, in general, true that the second Cousin problem is solvable if X is Stein. For

example, by (ii) of Lemma 2.1.8, the complex manifold C××C∗ ⊂ C2 is clearly Stein. But C∗×C∗ deformation

retracts onto S1×S1, so H2(C∗×C∗,Z) = H2(S1×S1,Z) = Z. By Theorem 4.3.12, the second Cousin problem

is not solvable on C∗ × C∗.
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