THE C²-ESTIMATE FOR THE COMPLEX MONGE-AMPÈRE EQUATION

KYLE BRODER

Let (X, ω) be a compact Kähler manifold. We adopt the notation $\omega_{\varphi} := \omega + \sqrt{-1}\partial\bar{\partial}\varphi$ for a cohomologous Kähler metric. We assume that there is a function $f: X \to \mathbf{R}$ such that

$$\omega_{\varphi}^n = e^f \omega^n. \tag{0.1}$$

In this talk, we will discuss the following \mathcal{C}^2 -estimate due to Aubin [?] and Yau [?]:

Theorem. Let $\varphi \in C^4(X)$ be a solution to the complex Monge–Ampère equation (0.1). There is a constant $C = C(X, \|f^{1/(n-1)}\|_{W^{2,\infty}}) > 0$ such that

$$\sup_{X} |\Delta_{\omega} \varphi| \leq C,$$

where $\Delta_{\omega}\varphi := \operatorname{tr}_{\omega}(\sqrt{-1}\partial\bar{\partial}\varphi)$ is the *complex Laplacian* of the Kähler metric ω .

The lower bound on $\Delta_{\omega}\varphi$ is automatic, depending only on the dimension of X. Indeed, taking the trace of $\omega_{\varphi} = \omega + \sqrt{-1}\partial\bar{\partial}\varphi > 0$ yields $\operatorname{tr}_{\omega}(\omega_{\varphi}) = n + \Delta_{\omega}\varphi > 0$, i.e.,

$$\Delta_{\omega}\varphi > -n$$

Moreover, an upper bound on $\Delta_{\omega}\varphi$ is equivalent to an upper bound on $\mathrm{tr}_{\omega}(\omega_{\varphi})$.

The method of estimating $\operatorname{tr}_{\omega}(\omega_{\varphi})$ goes back to Pogorelov's work [?] on \mathcal{C}^2 estimates for the real Monge–Ampère equation on bounded convex domains. In more detail, we will construct an auxilliary, globally defined, function $\mathcal{Q} = \mathcal{Q}(\operatorname{tr}_{\omega}(\omega_{\varphi}))$ on X. Since X is compact, there is a point $x_0 \in X$ for which \mathcal{Q} attains a maximum. At this point, the gradient vanishes and $0 \geq \Delta_{\omega} \mathcal{Q}$. Hence, it suffices to obtain constants $C_1 \geq 0$ and $C_2 > 0$ such that

$$\Delta_{\omega} \mathcal{Q} \geq -C_1 + C_2 \operatorname{tr}_{\omega_{\omega}}(\omega). \tag{0.2}$$

At the point $x_0 \in X$ where Q achieves its maximum, we would then have

$$0 \geq \Delta_{\omega} \mathcal{Q} \geq -C_1 + C_2 \operatorname{tr}_{\omega_{\omega}}(\omega),$$

and thus $\operatorname{tr}_{\omega}(\omega_{\varphi}) \leq C_1/C_2$.

KYLE BRODER

Remark. Although we are yet to prove anything yet, some remarks are in order. The first is that we are not obligated to use the Laplacian of ω . We can equally well use the Laplacian of ω_{φ} (and in fact, this is what Aubin and Yau used). The difference in Laplacians emerges impacts what geometric properties of X the constant C in the main estimate depends on, however.

The second important remark is that in the choice of auxilliary function Ω , the bound on $\operatorname{tr}_{\omega}(\omega_{\varphi})$ coming from (0.2) occurs at the point where Ω attains its maximum. Hence, one needs to ensure that this is also the point where $\operatorname{tr}_{\omega}(\omega_{\varphi})$ attains its maximum if one wants to obtain the estimate $\operatorname{tr}_{\omega}(\omega_{\varphi}) \leq C_1/C_2$ globally on X.

Regardless of the specific choice of auxiliary function Ω , to compute $\Delta_{\omega}\Omega$, we will need to compute $\Delta_{\omega} \operatorname{tr}_{\omega}(\omega_{\varphi})$. This has typically been done in a direct ad-hoc manner, but there is a more high-brow perspective that becomes essential in certain contexts (see, e.g., [?, ?, ?]).

There is some complex function theory lurking in the background of these calculations. Indeed, if $f: (X, \omega_g) \to (Y, \omega_h)$ is a holomorphic map between Kähler manifolds, we may locally write $w^{\alpha} = f^{\alpha}(z_1, ..., z_n)$, where $w = (w^1, ..., w^m)$. The derivative ∂f is then locally described by the $(n \times m)$ matrix $\partial f = (f_k^{\alpha}) := \frac{\partial f^{\alpha}}{\partial z_k}$. The norm (squared) of ∂f is then

$$|\partial f|^2 = g^{k\bar{\ell}} f_k^{\gamma} \overline{f_{\ell}^{\delta}} h_{\gamma\bar{\delta}}, \qquad (0.3)$$

where locally $\omega_g = \frac{\sqrt{-1}}{2} g_{k\bar{\ell}} dz^k \wedge d\bar{z}^\ell$ and $\omega_h = \frac{\sqrt{-1}}{2} h_{\gamma\bar{\delta}} dw^{\gamma} \wedge d\bar{w}^{\delta}$. If we take $f = \text{id to be the identity map, then } f_k^{\gamma} = \delta_k^{\gamma}$, and (0.3) reads

$$|\partial \mathrm{id}|^2 = g^{k\bar{\ell}} \delta^{\gamma}_k \delta^{\delta}_\ell h_{\gamma\bar{\delta}} = g^{k\bar{\ell}} h_{k\bar{\ell}} = \mathrm{tr}_{\omega_g}(\omega_h).$$

Hence, C^2 -estimates are obtained from obtaining estimates on the energy density $|\partial f|^2$ of a holomorphic map.