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Let (X,ω) be a compact Kähler manifold. We adopt the notation ωϕ := ω +
√
−1∂∂̄ϕ for a

cohomologous Kähler metric. We assume that there is a function f : X → R such that

ωnϕ = efωn. (0.1)

In this talk, we will discuss the following C2–estimate due to Aubin [?] and Yau [?]:

Theorem. Let ϕ ∈ C4(X) be a solution to the complex Monge–Ampère equation (0.1).

There is a constant C = C(X, ‖f1/(n−1)‖W 2,∞) > 0 such that

sup
X
|∆ωϕ| ≤ C,

where ∆ωϕ := trω(
√
−1∂∂̄ϕ) is the complex Laplacian of the Kähler metric ω.

The lower bound on ∆ωϕ is automatic, depending only on the dimension of X. Indeed,

taking the trace of ωϕ = ω +
√
−1∂∂̄ϕ > 0 yields trω(ωϕ) = n+ ∆ωϕ > 0, i.e.,

∆ωϕ > −n.

Moreover, an upper bound on ∆ωϕ is equivalent to an upper bound on trω(ωϕ).

The method of estimating trω(ωϕ) goes back to Pogorelov’s work [?] on C2 estimates for the

real Monge–Ampère equation on bounded convex domains. In more detail, we will construct

an auxilliary, globally defined, function Q = Q(trω(ωϕ)) on X. Since X is compact, there is

a point x0 ∈ X for which Q attains a maximum. At this point, the gradient vanishes and

0 ≥ ∆ωQ. Hence, it suffices to obtain constants C1 ≥ 0 and C2 > 0 such that

∆ωQ ≥ −C1 + C2trωϕ(ω). (0.2)

At the point x0 ∈ X where Q achieves its maximum, we would then have

0 ≥ ∆ωQ ≥ −C1 + C2trωϕ(ω),

and thus trω(ωϕ) ≤ C1/C2.
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Remark. Although we are yet to prove anything yet, some remarks are in order. The first

is that we are not obligated to use the Laplacian of ω. We can equally well use the Laplacian

of ωϕ (and in fact, this is what Aubin and Yau used). The difference in Laplacians emerges

impacts what geometric properties of X the constant C in the main estimate depends on,

however.

The second important remark is that in the choice of auxilliary function Q, the bound on

trω(ωϕ) coming from (0.2) occurs at the point where Q attains its maximum. Hence, one

needs to ensure that this is also the point where trω(ωϕ) attains its maximum if one wants

to obtain the estimate trω(ωϕ) ≤ C1/C2 globally on X.

Regardless of the specific choice of auxiliary function Q, to compute ∆ωQ, we will need to

compute ∆ωtrω(ωϕ). This has typically been done in a direct ad-hoc manner, but there is a

more high-brow perspective that becomes essential in certain contexts (see, e.g., [?, ?, ?]).

There is some complex function theory lurking in the background of these calculations.

Indeed, if f : (X,ωg) → (Y, ωh) is a holomorphic map between Kähler manifolds, we may

locally write wα = fα(z1, ..., zn), where w = (w1, ..., wm). The derivative ∂f is then locally

described by the (n×m) matrix ∂f = (fαk ) := ∂fα

∂zk
. The norm (squared) of ∂f is then

|∂f |2 = gk`fγk f
δ
` hγδ̄, (0.3)

where locally ωg =
√
−1
2 gk`dz

k ∧ dz` and ωh =
√
−1
2 hγδ̄dw

γ ∧ dw̄δ. If we take f = id to be the

identity map, then fγk = δγk , and (0.3) reads

|∂id|2 = gk`δγkδ
δ
`hγδ̄ = gk`hk` = trωg(ωh).

Hence, C2–estimates are obtained from obtaining estimates on the energy density |∂f |2 of a

holomorphic map.
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