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Complex Manifolds

A complex manifold X is a space that is locally modelled on Cn in such a
way that the local analytic structure is preserved.

X

p

ϕ
U

Cn

Examples: Euclidean space Cn; projective space Pn; the ball Bn; Tori
Tn; Calabi–Eckman manifolds S2k+1 × S2`+1; the spheres S2 and S6

(?);
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The Uniformization Theorem

Model geometries.

Theorem. A compact Riemann surface X of genus g := 1
2b1(X) has a

metric with

• positive curvature K > 0 ⇐⇒ g = 0 ⇐⇒ X ' P1;

• vanishing curvature K = 0 ⇐⇒ g = 1 ⇐⇒ X ' C/Λ;

• negative curvature K < 0 ⇐⇒ g ≥ 2 ⇐⇒ X ' D/Γ.

K < 0 K = 0 K > 0

(g ≥ 2) (g = 1) (g = 0)
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Definition. A family of complex manifolds (or a holomorphic fiber
space) is a surjective holomorphic map p : X→ S between complex
manifolds with connected fibers Xs := p−1(s).

s0 s2
s1 S

X

Xs2Xs0Xs1

p
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Trivial Fiber Spaces

The simplest examples of fiber spaces are products p : X× S→ S, with
p(x, s) = s. Slightly less-trivial are the fiber bundles:

Theorem. (Fischer–Grauert). A holomorphic fiber space p : X→ S

with compact fibers Xs is a fiber bundle if and only if all fibers are
biholomorphic.

A family/fiber space with compact fibers will be said to have (non-trivial)
holomorphic variation if the fibers are not all biholomorphic.
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Families of Complex Manifolds

Let D×D := {(z,w) ∈ C2 : |z| < 1, |w| < 1} denote the bidisk in C2.
Let p : D×D→ D, with p(z,w) := w. Then p defines a holomorphic
fiber space, with each fiber p−1(t) (for t ∈ D) biholomorphic to the
unit disk D.

D× D ⊆ C2

D ⊆ C

p
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Families of Complex Manifolds

Let B2 := {(z,w) ∈ C2 : |z|2 + |w|2 < 1} denote the unit ball in C2.
Denote by p : B2 → D, with p(z,w) := w. Then p defines a
holomorphic fiber space, with each fiber p−1(t) (for t ∈ D)
biholomorphic to the unit disk D.

B2 ⊆ C2

D ⊆ C

p
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An Example with Compact Fibers

Elliptic K3 surfaces: the total space X of a holomorphic fiber space
p : X→ P1, with every smooth fiber being an elliptic curve.

P1

X
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In the study of families p : X→ S of complex manifolds, there are
four key aspects. The properties of (1) the total space X; (2) the
base space S; (3) the fibers Xs = p−1(s); (4) the (holomorphic)
variation in the fibers.

s0 s2
s1 S

X

Xs2Xs0Xs1

p

X = total space

S = base space

Xs = fibers
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The interaction between the total space X and the fibers Xs is well known:

The curvature of the fibers Xs is bounded from above by the
curvature of X.

s0 s2
s1 S

X

Xs2Xs0Xs1

p

X = total space

S = base space

Xs = fibers

Curv(Xs) ≤ Curv(X)
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The interaction between the base space S and the holomorphic variation
has received considerable attention since the holomorphic variation in the
fibers of many classes of (compact) complex manifolds is encoded in the
moduli map µ : S→M.

s0 s2
s1 S

X

Xs2Xs0Xs1

p

X = total space

S = base space

Xs = fibers

µ

M
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There are also some intimations on the relationship between the base S, the
fibers Xs and the holomorphic variation in the fibers.

Example (elliptic K3 surfaces): Let X be the total space of a
holomorphic fiber space p : X→ P1 with the fibers being elliptic
curves.

P1

X
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Example (elliptic K3 surfaces): Let X be the total space of a
holomorphic fiber space p : X→ P1 with the fibers being elliptic
curves.

The holomorphic structure of an elliptic curve is parametrized by the
j–invariant. If all fibers of an elliptic K3 are smooth, we get a
holomorphic function j : P1 → C which is constant by the maximum
principle.
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We understand very little, however, about the interaction between the total
space X and the holomorphic variation in the fibers.

s0 s2
s1 S

X

Xs2Xs0Xs1

p

X = total space

S = base space

Xs = fibers

Question. Let p : X→ S be a holomorphic family of complex
manifolds. How does the curvature of X influence/interact with the
holomorphic variation of p?
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Recently, a picture has emerged on the relationship that the
curvature of X has on the holomorphic variations of the fibers.

Surprisingly, the picture emerges from Riemannian geometry, with
no reference to the holomorphic structure.
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The Tangent Space

Let M be a smooth manifold. For any point p ∈ M, there is an open
neighborhood U ⊂ M containing p and a homeomorphism ϕ : U→ Bn ⊆ Rn

mapping p to the origin in Rn. If (x1, ..., xn) denote the coordinates on Rn,
we can pull them back via ϕ to provide M with coordinates.

M

p

ϕ
U

Rn
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The Tangent Space TpM

From these local coordinates, we can define coordinate partial derivatives
∂xk := ∂

∂xk
, that we can view as vectors tangent to M at the point p ∈ M.

The R–linear span of the set {∂x1 , ..., ∂xn} forms an n–dimensional vector
space TpM – the tangent space to M at the point p.

p

TpM

M

∂x

∂y TpM ' Rn

p
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Riemannian Metrics

Let M be a smooth manifold as before, with tangent space TpM. Let
gp : TpM × TpM → R be a positive-definite quadratic form on TpM.

Definition. A Riemannian metric g on M is smooth assignment of
positive-definite quadratic forms gp on each tangent space TpM.
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The Riemannian metric allows us to compute the lengths of tangent
vectors, and by integrating, the lengths of curves in the manifold.

Definition. Let (M, g) be a Riemannian manifold. If γ : [0, 1]→ M is
a smooth curve, then the length of γ is defined by

lengthg(γ) :=

∫ 1

0
|γ̇(t)|2gγ(t)dt.

This, in turn provides a notion of distance:

Definition. Let (M, g) be a Riemannian manifold. The distance
between two points p, q ∈ M is defined by

distg(p, q) := inf
γ

lengthg(γ),

where the infimum is over all smooth curves γ : [0, 1]→ M such that
γ(0) = p and γ(1) = q.

18



Geodesics

A geodesic is a curve in M which locally minimizes the distance between
any two points.

Geodesics on P1 Geodesics on C Geodesics on D
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The Exponential Map

The exponential map

expp : TpM → M, expp(v) := γ(1),

where γ : [0, 1]→ M is unique geodesic satisfying γ(0) = p and γ′(0) = v.

TpM
v

γ

M

expp(v)

The exponential map provides a canonical set of coordinates on a
Riemannian manifold.
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The Curvature Tensor

The Taylor expansion of the components of the Riemannian metric g in the
exponential coordinates (x1, ..., xn):

g(∂xi , ∂xj ) = δ(∂xi , ∂xj )−
1
3
Rikj`xkx` + O(|x|3).

The Riemannian curvature tensor measures the failure of the
exponential map to be an isometry.
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The Sectional Curvature

From the Riemannian curvature tensor, we can define the sectional
curvature:

Secg(u, v) :=
R(u, v, v, u)

|u|2|v|2 − g(u, v)2

M

Secg > 0 Secg = 0 Secg < 0
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Manifolds with Negative Sectional Curvature

Theorem. (Priessmann). Let (M, g) be a compact Riemannian
manifold with Secg < 0. Then M is not homeomorphic to a product.
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Reminder: Complex Structures

The complex structure of a complex manifold X can be encoded in
an endomorphism J : TX → TX satisfying J2 = −id together with an
integrability crtierion.

TpX

X

vp
Jvp

Jvp

vp

TpX
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A Complex Structure on S2

Identify S2 ⊂ R3 with the space of unit imaginary quaternions Im(H3) ' R3.
For each point p ∈ S2, we get a map Jp : TpS2 → TpS2 satisfying
J2p = −idTpS2 , given by Jp(v) := p× v.

p

S2

TpS2
uJpu

Im(H)

For this complex structure, J is integrable ⇐⇒ the multiplication on H is
associative. 25



Hermitian and Kähler Metrics

Definition. A Riemannian metric g is said to be Hermitian if

g(J·, J·) = g(·, ·).

If the 2–form ωg(·, ·) := g(J·, ·) is closed, g is said to be Kähler.

Kähler Examples: Cn; Bn; Pn; submanifolds (hence, projective and
Stein manifolds are Kähler).

Non-Kähler Examples: S1 × S3; if S6 has an integrable complex
structure, it will not be Kähler; the flag manifold
F1,2,3(C3) := SU(3)/S(U(1)×U(1)×U(1)) is projective (hence,
Kähler), but the Killing metric on F1,2,3(C3) is not Kähler;
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The Holomorphic Bisectional Curvature

We want to understand Priessmann’s theorem in the Hermitian category.
Recall:

Theorem. (Priessmann). Let (M, g) be a compact Riemannian
manifold with Secg < 0. Then M is not homeomorphic to a product.

For Hermitian metrics ω, the most natural replacement for the
sectional curvature is the Holomorphic Bisectional Curvature

HBCω(u, v) :=
1

|u|2ω|v|2ω
R(u, u, v, v).

If the metric ω is Kähler, then the holomorphic bisectional curvature is a
sum of two sectional curvatures.
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Holomorphic Bisectional Curvature Examples

For Hermitian metrics ω, the most natural replacement for the
sectional curvature is the Holomorphic Bisectional Curvature

HBCω(u, v) :=
1

|u|2ω|v|2ω
R(u, u, v, v).

Examples: Compact Hermitian with quasi-positive HBC is
biholomorphic to Pn (Mori, Siu–Yau, Ustinovskiy); the Bergman
metric on Bn has HBCω ≤ −1; there are compact simply connected
manifolds with HBCω < 0 (Mohsen).
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A Theorem of Paul Yang

Theorem. (Priessmann). Let (M, g) be a compact Riemannian
manifold with Secg < 0. Then M is not homeomorphic to a product.

The first extension of this to the complex-analytic setting is due to Yang:

Theorem. (P. Yang). Let p : X→ S be a holomorphic fiber space
with compact Kähler fibers. If all fibers of p are biholomorphic, then
X does not admit a metric with HBCω < 0.

There have been a number of extensions of Yang’s theorem (H. Seshadri, F.
Zheng, V. Tosatti, K. Tang) all viewing Yang’s theorem as an extension of
Priessmann’s theorem.
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A Question Raised By Mok

Still out of reach, however, is the following long-standing question raised by
Ngaiming Mok:

Question. Does the bidisk D×D admit a complete Kähler metric
with HBCω ≤ −1?
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Definition. A Kodaira fibration surface X is the total space of a
non-trivial holomorphic fiber space p : X→ S, where the base and
fibers are compact Riemann surfaces of genus ≥ 2.

S

s0

Xs0

X
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A Theorem of To and Yeung

Theorem. (To–Yeung). The total space X of a Kodaira fibration
surface admits a Kähler metric with HBCω < 0.

S

s0

Xs0

X
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We saw before:

Theorem. (P. Yang). Let p : X→ S be a trivial Kodaira fibration
surface. Then X does not admit a metric with HBCω < 0.

On the other hand:

Theorem. (To–Yeung). The total space X of a Kodaira fibration
surface admits a Kähler metric with HBCω < 0.
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Taken together, the theorems of To–Yeung and Yang illuminate the
following:

Theorem. Let p : X→ S be a Kodaira fibration surface. Then p has
non-trivial variation if and only if X admits a Kähler metric with
HBCω < 0.

34



Simplest Case of Non-Compact Fiber Spaces

Definition. A surjective holomorphic map p : X→ D is called a disk
fibration if every fiber Xs := p−1(s) is biholomorphic to the unit disk
D ⊂ C.

We saw the following examples before:

B2 ⊆ C2

D ⊆ C

p

D× D ⊆ C2

D ⊆ C

p
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Holomorphic Variation in Disk Fibrations

For compact fiber spaces, p : X→ S is locally trivial ⇐⇒ the fibers
are all biholomorphic.

Theorem. (Royden). A disk fibration p : X→ D is locally trivial if
and only if X ' D×D and p : D×D→ D, with p(z,w) = w.

Example. The disk fibration p : B2 → D given by projection onto one
of the factors is not locally trivial. The Bergman metric has
HBCω ≤ −κ0 < 0.
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New Perspective on the Mok Problem

Returning to the Mok problem:

Question. Does the bidisk D×D admit a complete Kähler metric
with HBCω ≤ −1?

Comparing with the case of Kodaira fibration surfaces:

Theorem. Let p : X→ S be a Kodaira fibration surface. Then p has
non-trivial variation if and only if X admits a Kähler metric with
HBCω < 0.
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A New Perspective on the Mok Problem

A resolution of the Mok problem would be achieved by proving the
following more general statement:

Conjecture. Let p : X→ D be a disk fibration. If X admits a Kähler
metric with HBCω ≤ −1, then p has non-trivial holomorphic
variation.

Corollary. The bidisk D×D admits no Kähler metric with
HBCω ≤ −1.
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