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Abstract

We survey the recent developments around the Schwarz lemma for holomorphic maps. The Schwarz
lemma provides a tool for restricting the existence of holomorphic maps between complex manifolds.
We begin with a preliminary discussion regarding complex manifolds, holomorphic vector bundles,
Hermitian metrics, and curvature of Hermitian metrics. This culminates in a discussion of the
Schwarz lemmas. We first consider those of Chern–Lu type, specifically those of Royden, Yang–
Zheng, and Broder–Stanfield Schwarz lemmas. The Aubin–Yau Schwarz lemmas are then discussed,
with the Broder Schwarz lemma being the primary focus. Several corollaries of the Schwarz lemmas
are provided throughout.

1



Acknowledgements

I would like to thank my first-named supervisor, Kyle Broder, for the extensive amount of attention
he invested into my studies. His dedication to the pursuit of knowledge is inspiring, and something
that I set out to achieve each day in my honours experience. Although he may think his methods
harsh, I would be much worse as a mathematician, and far less resolute as a person, without them.
I would also like to thank my second-named supervisor, Artem Pulemotov, for his overall guidance
and insights from a differing perspective.

Moreover, I would like to thank my honours and undergraduate cohort. The countless conversations
had with you all helped build my understanding piece by piece, and I hope my ramblings helped
build yours as well. I would also like to thank the postgraduate students Bailey Whitbread and
Adam Thompson for their insights and guidance. To Prof. Sébastien Picard, Prof. Damin Wu,
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Introduction

A complex manifold is a topological space locally modelled on Cn by maps which are holomorphic
(i.e., preserve the complex-analytic structure). Studying the maps into and out of complex mani-
folds is central to understanding all such spaces. In particular, we restrict our focus to holomorphic
functions and holomorphic curves i.e., non-constant holomorphic maps X → C and C → X re-
spectively. The presence or absence of these maps naturally organises complex manifolds into four
classes:

(i) holomorphic functions X → C are abundant;
(ii) there are no holomorphic curves C → X;
(iii) holomorphic curves C → X are abundant;
(iv) there are no holomorphic functions X → C.

Class (iv) is far too large to admit any insightful study; indeed, all compact complex manifolds lie
in (iv) by the maximum principle. This observation reduces the paradigm to the study of three
classes. Class (i) is occupied by complex manifolds which admit holomorphic embeddings into CN

for some N ∈ N, referred to as Stein manifolds. Forstnerič’s Oka manifolds [For09] and Campana’s
special manifolds [Cam04] arise in class (iii). Class (ii) is significant enough to warrant a definition
of its own - Brody hyperbolic manifolds [Bro78]. For this project, we narrow our focus to manifolds
of this type. Hence, restricting holomorphic maps between complex manifolds becomes our primary
goal. The Schwarz lemma provides the key tool for this restriction.

The principle of restricting holomorphic maps has its origins in complex analysis. In particular,
this principle is exemplified by the classical Schwarz lemma, a pioneering result in the field. It
asserts that for every holomorphic function f : D → D such that f(0) = 0, where D is the unit disk,
two main conclusions are reached:

(1) |f(z)| ≤ |z| for all z in the unit disk;
(2) If the equality holds for any z ̸= 0, then f is a rotation of the unit disk about the origin.

The classical Schwarz lemma imposes strong restrictions on the behaviour of holomorphic self-maps
of the unit disk. This result was extended in [Pic16] with the Schwarz–Pick lemma, when it was
observed that f need not fix the origin. This resulted in a different type of constraint: holomorphic
self-maps of the disk are distance decreasing under the Poincaré distance ρ:

dρ(f(z), f(w)) ≤ dρ(z, w).

The first incarnation of a Schwarz lemma in differential geometry was considered by Ahlfors [Ahl38],
generalising the results of Pick. We now consider holomorphic maps f : D → (Σ, g), where (Σ, g) is
a Riemann surface with a Hermitian metric g. In such a case, the familiar Gauss curvature κg is our
primary tool for restricting holomorphic maps. If κg ≤ −1, we obtain the Schwarz–Ahlfors–Pick
lemma, or simply the Ahlfors–Schwarz lemma:

dg(f(z), f(w)) ≤ dρ(z, w).

That is, all holomorphic maps into a negatively curved Riemann surface are distance decreasing with
respect to the Poincaré distance. One may interpret the Ahlfors–Schwarz lemma as an extension
of the Schwarz–Pick lemma to a higher dimensional setting; imbuing the disk with the Poincaré
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metric given by

ρ =
|dz|

(1− |z|2)
,

the original Schwarz–Pick lemma is obtained. The Schwarz lemma posed by Ahflors marks an
important theme: curvature acts as the fundamental constraint on holomorphy.

Modern Schwarz lemmas have shifted their focus away from distance decreasing maps. Instead,
results regarding the non-existence of holomorphic maps and curvature properties of manifolds
are considered. This is achieved through Laplacian estimates of the energy density |∂f |2. If the
Laplacian is with respect to the source metric, it is referred to as Chern–Lu [Lu68]. Applying the
Laplacian that is with respect to the target metric yields the second family of Schwarz lemmas,
referred to as Aubin–Yau [Aub78], [Yau78].

The first of the Chern–Lu Schwarz lemmas, introduced in [Lu68], primarily focused on holomorphic
maps between Kähler manifolds, a special class of complex manifolds where the Riemannian and
complex structure interact in a compatible manner. Where it diverges from the Ahlfors’ Schwarz
lemma is that suitable curvature bounds are now required on target and source manifolds to restrict
holomorphic maps. The source manifold requires a positive lower bound by the Ricci curvature.
For the target term, however, we require a negative upper bound on the less familiar holomorphic
bisectional curvature [GK67], defined as

HBCg(u, v) :=
1

|u|2g|v|2g
R(u, u, v, v) =

1

|u|2g|v|2g

∑
i,j,k,ℓ

Rijkℓu
iujvkvℓ

where u, v are tangent vectors in the holomorphic tangent bundle, and R denotes the curvature of
the Chern connection. The holomorphic bisectional curvature imposes strong restrictions on the
geometry of the manifold. For example, the Mori [Mor79], Siu–Yau [SY80] resolution of the Frankel
conjecture demonstrates if (X, g) is a compact Kähler manifold with a Kähler metric of HBCg > 0,
then X must be biholomorphic to n-dimensional projective space Pn. The holomorphic sectional
curvature HSCg, obtained by restricting to the diagonal of HBCg, is comparatively a much weaker
curvature term. The holomorphic sectional curvature is of particular interest as it provides a large
number of Brody hyperbolic manifolds, evidenced by the following corollary of Greene–Wu [GW79].

Corollary ([GW79]). Let (X, g) be a Hermitian manifold with HSCg ≤ −Λ0 < 0. Then X admits
no entire curves i.e., X is Brody hyperbolic.

Royden [Roy80] demonstrated using purely linear-algebraic techniques1 that HSC of the target
manifold provides sufficient control for the Chern–Lu Schwarz lemma. Royden’s Schwarz lemma
immediately yields the following corollary:

Corollary ([Roy80]). Let f : (X, g) → (Y, h) denote a holomorphic map between Kähler manifolds,
whereX is compact. Assume that Ricg ≥ Cg for C ≥ 0, and HSCh ≤ −Λ0 < 0. Then, f is constant.

Royden’s trick also works when f is a holomorphic curve (or more generally, a holomorphic map
of rank 1). Transitioning from a Kähler setting to a Hermitian (non-Kähler) setting for general
holomorphic maps, however, poses significant problems. For a holomorphic map between Hermitian
manifolds, suitable curvature bounds on the source manifold are provided by the (second) Chern
Ricci curvature. Unlike the Kähler case, it is unknown whether the holomorphic sectional curvature

1This technique is usually referred to as Royden’s trick in the literature (see, e.g., [Bro22a]).
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provides suitable bounds on the target manifold. This prompted Yang–Zheng [YZ19] to study a
curvature term which they coined the real bisectional curvature:

RBCg(ξ) :=
1

|ξ|2g

∑
i,j,k,ℓ

Rijkℓξ
ijξkℓ,

where ξ is a non-negative Hermitian (1,1)-tensor. A sign on the real bisectional curvature, RBCg <
0 for instance, forces that same sign on the holomorphic sectional curvature. If the metric is
Kähler, then the converse also holds. When considering this novel curvature term, we obtain a
refined version of the Chern–Lu Schwarz lemma for Hermitian metrics. This Schwarz lemma then
immediately yields the following result.

Corollary ([YZ19]). Let f : (X, g) → (Y, h) denote a holomorphic map between Hermitian mani-

folds, where X is compact. Assume that Ric
(2)
g ≥ Cg for C > 0, and RBCh ≤ −Λ0 < 0. Then, f

is constant.

Further variations of the Royden Schwarz lemma (i.e., bounds regarding the holomorphic sectional
curvature of the target) were considered in [BS23] for pluriclosed manifolds - manifolds which are
not restricted by the Kähler condition, yet admit enough structure to be amenable to study. If the
source is assumed to be Kähler and the target is assumed to be pluriclosed, sufficient control is
provided by the HSC of the target.

The second family of Schwarz lemmas arise under the assumption that f is a biholomorphism i.e.,
an invertible holomorphic map with a holomorphic inverse. Further, the Laplacian of the energy
density is taken with respect to the target metric. In this case, we refer to such inequalities as
Aubin–Yau. Such estimates were originally considered by Yau [Yau78] and Aubin [Aub78] for
problems involving Kähler–Einstein metrics. Several further uses have since been discovered. In
the case where the target is Kähler, Yau observed that suitable curvature assumptions are provided
by the holomorphic bisectional curvature. The curvature conditions within the Hermitian class are
not well understood, prompting Broder [Bro22b] to consider a novel curvature term, the Schwarz
bisectional curvature:

SBCg(ξ) :=
∑
i,j,k,ℓ

Rijkℓξ
ij(ξ−1)kℓ,

where ξ is a non-negative Hermitian (1,1)-tensor. Adopting this curvature term then yields a
Hermitian Aubin–Yau Schwarz lemma. Applying this Schwarz lemma yields the following result.

Corollary ([BS23]). Let f : (X, g) → (Y, h) denote a holomorphic map between Hermitian mani-

folds, where X is compact and f is biholomorphic onto its image. Assume that Ric
(2)
h ≤ −Ch for

C > 0, and SBCg ≥ 0. Then, f is constant.

With extensive developments around the Schwarz lemma in recent years, understanding and ap-
plying them becomes overwhelming to outside purveyors of the subject. Hence, we find it timely to
survey the development and some notable applications of the novel Schwarz lemmas. In this thesis,
we build the knowledge required to understand the contemporary Schwarz lemmas and survey the
current landscape regarding the topic.
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Outline of the Thesis

Chapter 1 states the preliminary material required to understand the Schwarz lemma. The first
section discusses the basic theory of several complex variables and complex manifolds, where mul-
tiple examples of complex manifolds are stated. In the second section, we consider structures that
accompany complex manifolds; the complexified tangent bundle, the space of (p, q)-forms, and the
Dolbeault operators are studied. The section then concludes with a discussion of holomorphic vec-
tor bundles and the Koszul–Malgrange theorem. Section 3 introduces connections and curvature on
holomorphic vector bundles. We construct the Chern connection on holomorphic vector bundles.
We conclude this section by studying Hermitian and Kähler metrics. The final section presents the
basic theory regarding curvature of Hermitian metrics. Curvature terms such as the holomorphic
sectional curvature, holomorphic bisectional curvature, and the Chern Ricci curvatures are all in-
troduced. Many examples of Hermitian manifolds with important curvature properties - constant
and negative holomorphic sectional curvature, Ricci-flat - are also provided.

Chapter 2 is a survey of the recent developments in the Schwarz lemma. The first section begins
with a discussion of the complex Laplacian and the maximum principle. After establishing a general
Bochner formula on smooth sections of Hermitian vector bundles proven in [Bro22c], we restrict
our attention to holomorphic sections. This yields the Kobayashi–Wu Bochner formula, proven
in [KW70]. We then consider holomorphic maps using this formula. Section 2 focuses on the
Chern–Lu Schwarz lemma. We discuss developments regarding them, including the extensions by
[Roy80], [YZ19], and [BS23]. Several important results are then demonstrated using this formula.
This includes the work of [BP23]. The final section discusses the Aubin–Yau Schwarz lemma and
recent advances made by [Bro22b] regarding the Schwarz bisectional curvature.
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1. Preliminaries

1.1. Complex Manifolds. We begin with a reminder of complex differentiability in several com-
plex variables, following [Sha92], [Isa17], [Bro22c]. Throughout, the term domain will refer to an
open, connected subset of Cn, and functions will be understood as scalar-valued maps.

Definition 1.1.1. Let f : Ω ⊆ Cn → C be a complex-valued function on a domain Ω. We say that
f is K-differentiable (either K = R or C) at z ∈ Ω if

f(z + ε) = f(z) + df(ε) +O(ε),

for some K-linear function df , and O(ε)/|ε| → 0 as ε → 0. We call the function df the differential
of f at z.

Example 1.1.2. Consider the function f(z) = |z|2. Let ε ∈ C \ {0}. Then, f(z + ε) = |z|2 + zε+
zε + |ε|2. We observe that O(ε) = |ε|2, and hence O(ε)/|ε| → 0 as ε → 0. Further, we see that
df(ε) is R-linear. However, df(ε) is not C-linear for all z ∈ C. One may observe this by comparing
df(

√
−1ε) and

√
−1df(ε). The only value of z that satisfies df(

√
−1ε) =

√
−1df(ε) is z = 0. Hence,

f is only C-differentiable at 0.

Recall that for a given basis {e1, . . . en} of a vector space V , we may construct the dual basis
{ε1, . . . εn} where εi(ej) = δij , with δij = 1 if and only if i = j. Let {dx1, . . . , dxn, dy1, . . . , dyn}
denote the dual basis for the standard basis vectors of R2n. We introduce the notation

dzν := dxν +
√
−1dyν , dzν := dxν −

√
−1dyν .

We refer to zν = xν +
√
−1yν and zν = xν −

√
−1yν as complex coordinates. If f : Ω → C is

R-differentiable, then we can write the differential as

df =
n∑

ν=1

(
∂f

∂xν
dxν +

∂f

∂yν
dyν
)
.

In complex coordinates, df may be written as

df =
n∑

ν=1

(
∂f

∂zν
dzν +

∂f

∂zν
dzν
)
,

where
∂

∂zν
:=

1

2

(
∂

∂xν
−
√
−1

∂

∂yν

)
,

∂

∂zν
=

1

2

(
∂

∂xν
+

√
−1

∂

∂yν

)
.

We write

∂f :=

n∑
ν=1

∂f

∂zν
dzν , ∂f :=

n∑
ν=1

∂f

∂zν
dzν .

where ∂ (resp. ∂) is referred to as the holomorphic (resp. anti-holomorphic) Dolbeault operator. Ob-
serve that since df(

√
−1w) =

√
−1∂f(w)−

√
−1∂f(w) and

√
−1df(w) =

√
−1∂f(w)+

√
−1∂f(w),

C-linearity implies that ∂f = 0. These observations are summarised in the following well-known
result:

Theorem 1.1.3 (Cauchy–Riemann Equations). Let f : Ω → C be a function which is R-differentiable
at a point z ∈ Ω, where Ω is a domain. Then, f is C-differentiable at z if and only if the Cauchy–
Riemann equations are satisfied, i.e.,

∂f = 0.
8



Remark 1.1.4. In real coordinates (x1, . . . xn, y1, . . . , yn), The Cauchy–Riemann equations become
a system of partial differential equations given by

∂u

∂xν
=

∂v

∂yν
,

∂u

∂yν
= − ∂v

∂xν

where u := Re(f), v := Im(f). We note that for n > 1, this system is over determined.

Definition 1.1.5. A function f : Ω → C is said to be holomorphic at a point z ∈ Ω if it is
C-differentiable in some neighbourhood of this point.

A function is referred to as holomorphic on a domain Ω if it is holomorphic at every point in Ω. If it
is holomorphic on all of Cn, then it is called entire. As a cautionary remark, complex differentiability
at a point does not imply holomorphy, as shown with Example 1.1.2. The definition of holomorphy
is readily extendable to maps of the form f : Cn → Cm.

Definition 1.1.6. A map f : Ω1 → Ω2 where f = (f1, . . . , fm),Ω1 ⊆ Cn,Ω2 ⊆ Cm is referred to
as holomorphic at p ∈ Ω1 if each f i is holomorphic at p. We say f is holomorphic on Ω1, denoted
f ∈ O(Ω1), if each f

i is holomorphic for each point in Ω1.

The notion of holomorphy allows us to consider an equivalence of complex structures.

Definition 1.1.7. Let Ω, Ω̃ be domains in Cn. A biholomorphism is a map f : Ω → Ω̃ which is
holomorphic and invertible. An automorphism is a biholomorphism from a domain to itself.

We consider the space of square integrable holomorphic functions L2
O(Ω) := L2(Ω) ∩ O(Ω). This

space inherits the L2 norm in a very natural manner:

∥f∥2L2
O
(Ω) := ∥f∥2L2(Ω) =

∫
Ω
|f(z)|2 dµ

where | · | denotes the modulus of f . It is an inner product space, with the inner product defined
by

⟨f, g⟩L2
O
(Ω) :=

∫
Ω
f(z)g(z)dµ.

The estimate supz∈K |f(z)| ≤ C(K)∥f∥L2(Ω), where K is a compact subset of Ω, implies that L2
O(Ω)

is a Hilbert space. This estimate also implies that the evaluation functional, defined by

evz(f) = f(z)

is a continuous linear functional. This allows us to leverage the Riesz representation theorem, in
that there exists ηz(ζ) ∈ L2

O(Ω) such that

evz(f) =

∫
Ω
f(ζ)ηz(ζ) dµ(ζ).

We define K(z, ζ) := ηz(ζ) as the Bergman kernel. On the unit ball Bn, the Bergman kernel takes
the form

K(z, ζ) =
n!

πn
1

(1− ⟨z, ζ⟩)n+1
,

where ⟨·, ·⟩ denotes the standard Hermitian inner product on Cn. The Bergman kernel has found a
number of uses throughout complex analysis. Most notably, the work of Fefferman [Fef74] utilised
the Bergman kernel to analyse biholomorphisms between certain domains. For our purposes, the
Bergman kernel furnishes a particularly important Hermitian inner product, called the Bergman
metric, on a bounded domain. We now explore the relationship between harmonic and holomorphic
functions.
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Reminder 1.1.8. A C2-function f : Ω → R, where Ω is an open connected subset of Rn, is referred
to as harmonic if ∆f = 0 i.e., the Laplacian of f vanishes.

In the case of one complex variable, we may consider a holomorphic function f : C → C. The
Cauchy–Riemann equations then yield,

uxx + uyy = (vy)x − (vx)y = vxy − vyx = 0

where the subscripts denote derivatives and u := Re(f), v := Im(f). Therefore, the real part of
any holomorphic function is a harmonic function. This argument also follows for v, meaning that
the real and imaginary parts of a holomorphic function are harmonic. To extend this notion to
higher dimensions, we have the following: for a holomorphic function f : Ω ⊆ Cn → C, we have
that u = 1

2(f + f) and v = 1
2(f − f). Since f is holomorphic,

∂u

∂zν
=

1

2

(
∂f

∂zν
+

∂f

∂zν

)
=

1

2

(
∂f

∂zν

)
.

It follows that,

∂2u

∂zµ∂zν
=

1

2

∂

∂zµ
∂f

∂zν
= 0,

This motivates the following definition.

Definition 1.1.9. Let Ω ⊆ Cn be a domain. A C2-function u : Ω → R is called pluriharmonic if

∂∂u = 0.

Moreover, we call u plurisubharmonic (resp. strictly plurisubharmonic) at a point p ∈ Ω if the
complex Hessian (

∂2u

∂zi∂zj

)
is positive semi-definite (resp. positive definite) at p. We say u is plurisubharmonic (resp. strictly
plurisubharmonic) on Ω if it is plurisubharmonic (resp. strictly plurisubharmonic) for all p ∈ Ω.

Example 1.1.10. As demonstrated in the previous discussion, the real and imaginary parts of a
holomorphic function - in one or several complex variables - are pluriharmonic. By converting into
real coordinates, we may also observe that harmonic functions are pluriharmonic. If f : Ω ⊆ Cn → C
is holomorphic, then log |f(z)| is plurisubharmonic. This is particularly useful for considering
the Bergman function, defined as K(z, z). For cases where K(z, z) > 0, logK(z, z) is strictly
plurisubharmonic. This occurs when the associated domain Ω to the Bergman kernel is bounded.

Definition 1.1.11. Let p ∈ Cn and r ∈ (R+)
n, where R+ denotes the positive real numbers. We

denote by

Dn(p, r) := {z ∈ Cn : |zν − pν | < rν}
the polydisk centered at p with polyradius r. We will write ∂Dn(p, r) for the boundary of Dn(p, r)
and define the skeleton of Dn(p, r) as

Γ(p, r) := ∂D(p1, r1)× · · · × ∂D(pn, rn).

We denote C(Ω) as the space of continuous functions on the closure of Ω.

Reminder 1.1.12. Cauchy integral formula.
10



Recall that for a holomorphic function in one variable f ∈ O(D)∩C(D) where D := D(p, r), we may
represent f using the Cauchy integral formula [Isa17, p. 78]: given z ∈ D, we have that

f(z) =
1

2π
√
−1

∫
∂D

f(ζ)

ζ − z
dζ.

This result is vital for proving the analyticity of holomorphic functions, and consequently Liouville’s
theorem (see, e.g., [Isa17, p. 107]). In several complex variables, this is also the case.

Theorem 1.1.13 (Cauchy Multiple Integral Formula, [Sha92, p. 18]). Let Dn := Dn(p, r) denote

the polydisk centered at p ∈ Cn with polyradius r. Let f ∈ O(Dn) ∩ C(Dn
). For any point z ∈ Dn,

the value of f at z can be represented as a multiple Cauchy integral

f(z) =
1

(2π
√
−1)n

∫
Γ

f(ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn,

where Γ denotes the skeleton of Dn.

Proof. For z = (z1, . . . , zn), set w = (z1, . . . , zn−1) such that z = (w, zn). Write Dn−1
w for the image

of the projection of Dn onto the first (n− 1) coordinate directions. The function f(z) = f(w, zn) is
holomorphic in zn at every point of the disk Dn := {|zn−pn| < rn} and is continuous on its closure.
Hence, the Cauchy integral formula for holomorphic functions of one complex variable yields

f(z) =
1

2π
√
−1

∫
∂Dn

f(w, ζn)

ζn − zn
dζn.

If w′ := (z1, . . . , zn−2) such that z = (w′, zn−1, zn), the function f(w, zn) = f(w′, zn−1, zn) is
holomorphic on Dn−1 := {|zn−1 − pn−1| < rn−1} and continuous on its closure. Hence, we may
write

f(w, ζn) =
1

2π
√
−1

∫
∂Dn−1

f(w′, ζn−1, ζn)

ζn−1 − zn−1
dζn−1.

Inserting this into the previous expression, we see that

f(z) =
1

(2π
√
−1)2

∫
∂Dn

1

ζn − zn

(∫
∂Dn−1

f(w′, ζn−1, ζn)

ζn−1 − zn−1
dζn−1

)
dζn.

Since f is (jointly) continuous on Dn, the Fubini-Tonelli theorem implies that

f(z) =
1

(2π
√
−1)2

∫
∂Dn×∂Dn−1

f(w′, ζn−1, ζn)

(ζn−1 − zn−1)(ζn − zn)
dζn−1 dζn.

Iterating this argument completes the proof. □

The integral representation of a holomorphic function leads to a number of remarkable results.
11



Theorem 1.1.14 ([Sha92, p. 19]). Let Dn := Dn(p, r). We may write f ∈ O(Dn) as a multiple
power series

f(z) =
∞∑

|k|=0

ck(z − p)k,

where

ck =
1

(2π
√
−1)n

∫
Γ

f(ζ)

(ζ − p)k+1
dζ

Proof. It suffices to assume that f ∈ O(Dn) ∩ C(Dn). Indeed, for any z ∈ Dn, we may choose a
smaller polydisk Dn(p, r−ε) which is compactly contained in Dn and work on this smaller polydisk.
Now write

1

ζ − z
=

1

ζ − p

1(
1− z1−p1

ζ1−p1

)
· · ·
(
1− zn−pn

ζn−pn

) =
1

ζ − p

∞∑
k=0

(
z − p

ζ − p

)k

=
∞∑
k=0

(z − p)k

(ζ − p)k+1
.

For any z ∈ Dn, this series converges absolutely and uniformly in ζ on Γ. Multiplying by the
continuous (and hence, bounded) function f(ζ)/(2π

√
−1)n on Γ and integrating term by term over

Γ, this completes the proof. □

Theorem 1.1.15 (Fundamental Theorem of Hartogs, [Sha92, p. 28]). Let f denote a C-valued
function from a domain Ω ⊆ Cn. If f is holomorphic with respect to each variable, then it is
holomorphic as a function of n variables.

Remark 1.1.16. The theorem evidently fails for functions f : R2 → R as evidenced by the standard
example {

f(x, y) = xy
x2+y2

,

f(0, 0) = 0.

Although this function is analytic in each variable, it is not even continuous at the origin.

For a holomorphic function f ∈ O(D) ∩ C(D) which is bounded by M > 0, we obtain Cauchy
inequalities in several complex variables:

|ck| ≤
M

rk
,

where rk = rk1 . . . r
kn
n . Further observe that if f is entire, then by the Cauchy inequalities where

r1 = · · · = rn = r, we have |ck| ≤ M
r|k|

. If |k| = k1 + · · ·+ kn > 0, then the limit r → ∞ implies that

ck = 0 i.e., f(z) = c0. This yields a fundamental result in complex analysis.

Theorem 1.1.17 (Liouville’s Theorem). A bounded and entire function is constant.

We now consider spaces more general than domains in Cn. Throughout, we assume that X is a
connected, Hausdorff, paracompact2 topological space.

2To remind ourselves of paracompactness, let U = (Uα)α∈A be an open cover of X. The cover U is said to be locally
finite if each point in X admits an open neighbourhood that intersects finitely many elements of U. A refinement of
U is an open cover V such that for all Vα ∈ V, there exists Uα ∈ U such that Vα ⊆ Uα. Such a topological space is
referred to as paracompact if every open cover of X admits a locally finite refinement.

12



Definition 1.1.18. Let U = (Uα)α∈A be an open covering of X indexed by the set A. Further,
assume that each Uα is homeomorphic to the unit ball Bn := {z ∈ Cn : |z| < 1}. The pairs
(Uα, φα), where φα : Uα → Bn is a homeomorphism, is referred to as a chart, and the set of charts
A := {(Uα, φα)}α∈A is called an atlas of the covering U.

The existence of an atlas allows us to furnish a set of coordinates on our topological space. Indeed,
given a chart (Uα, φα) and a point p ∈ U , we may identify this point with its image under φα.
Hence, (Uα, φα) is usually referred to as a coordinate chart, where Uα is a coordinate domain and
φα is a coordinate map. We say that φα is centered at p ∈ M if φα(p) = 0. For p ∈ Uα where
(Uα, φα) is a coordinate chart, we say that φα(p) ∈ Cn are the local coordinates of p.

Consider coordinate charts in the atlas A on X, denoted (Uα, φα) and (Uβ, φβ), such that Uα∩Uβ ̸=
∅. On their overlap, we may consider a new map defined by

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ).

Such a map φαβ := φβ ◦ φ−1
α is referred to as a transition map. These allow us to make sense of

regularity on X.

Definition 1.1.19. We say that an atlas A is holomorphic if for any two charts on overlapping
coordinate domains, their transition map is holomorphic.

To eliminate dependence on any particular holomorphic atlas, we consider two holomorphic atlases
A and B on X to be equivalent if A∪B also forms a holomorphic atlas. It is straightforward to check
that this defines an equivalence relation, meaning that we can consider the equivalence class of a
holomorphic atlas. Endowing a topological space with such an equivalence class ensures that the
transition maps between (Uα, φα) ∈ A and (Vβ, ψβ) ∈ B are holomorphic as well. This approach
defines a notion of holomorphy that is intrinsic to X and independent of any specific choice of
coordinates. An equivalence class of a holomorphic atlas is referred to as a complex structure.

Definition 1.1.20. A complex manifold X is a Hausdorff, paracompact topological space equipped
with a complex structure. We define the complex dimension of X, denoted dimC(X), to be the
(complex) dimension of the balls which each coordinate domain Uα is homeomorphic to.

Remark 1.1.21. The naming convention for local coordinates changes slightly if X is equipped
with a complex structureA. Let (U,φ) be a chart onX and (z1, . . . , zn) denote the usual coordinates
on Cn. If p ∈ X is a point, then the entries zi in φ(p) = (z1, . . . , zn) are called the holomorphic
coordinates of p with respect to (U,φ).

Consider an atlas of a topological space M for which each element of the open cover is homeo-
morphic to Bn ⊆ Rn, not Cn. Repeating the above construction, but instead imposing that the
transition maps be infinitely differentiable, we obtain a smooth atlas onM . This yields the following
construction.

Definition 1.1.22. A smooth manifold M is a Hausdorff, paracompact topological space equipped
with a smooth structure i.e., an equivalence class of smooth atlases. We define the real dimension
of M , denoted dimR(M), to be the (real) dimension of the balls which each coordinate domain Uα

is homeomorphic to.

We writeM to denote a smooth manifold while X denotes a complex manifold. Given a coordinate
chart (Uα, φα) on M and p ∈ M , we refer to φα(p) = (x1, . . . , xn) as the local coordinates of p.
Throughout this project, the notation of (xi) for local coordinates of a smooth chart is used.

13



All holomorphic maps are analytic and, in particular, smooth. This means that a holomorphic atlas
is also a smooth atlas and therefore defines a smooth structure on X. Therefore, every complex
manifold is also a smooth manifold in a canonical way. This identification also admits the identity
dimC(X) = 2 dimR(X).

Example 1.1.23. A trivial example of a complex manifold is Cn, where it may be covered by a
single chart: (Cn, Id). The identity is holomorphic, meaning that Cn is a complex manifold.

Example 1.1.24. A complex manifold of (complex) dimension 1 is referred to as a Riemann
surface. An example of such a manifold is the Riemann sphere S2. The atlas we consider is
furnished by the stereographic projection: consider S2 as a subset of R3. Our coordinate chart φ
then projects from the north pole N = (0, 0, 1) onto equatorial plane, which we identify with C.

N

p

φ(p)

A similar construction holds for a projection from the south pole, which we denote S := (0, 0,−1).
This gives us the following maps.

φ : S2 \ {N} → C, φ(x, y, z) =
x+

√
−1y

1 + z

ψ : S2 \ {S} → C, φ(x, y, z) =
x−

√
−1y

1 + z

The maps φ and ψ are then coordinate charts which cover S2. The composition φ◦ψ−1 : C\{0} →
C \ {0} evaluates to φ ◦ ψ−1(z) = 1

z , which is holomorphic on C \ {0}. Hence, S2 is a complex
manifold.

Example 1.1.25. Consider some n-dimensional vector space V over field K. The projectivisation
of V , denoted by P(V ), is the set of all equivalence classes under the relation ∼ defined by v1 ∼ v2
if and only if there exists λ ∈ K \ {0} such that v1 = λv2. In other words, P(V ) is the set of all
1-dimensional subspaces of V . The most notable examples of these spaces are P(Rn) and P(Cn),
known respectively as the real projective space and complex projective space. The latter holds
particular significance in this project, such that we denote it by Pn := P(Cn+1).

We now show that Pn is a complex manifold. To endow Pn with a complex structure, let Ũi :=

{z ∈ Cn+1 \ {0} : zi ̸= 0}, and let Ui := π(Ũi). Define φi : Ui → Cn by

φi([z
1, . . . , zn+1]) =

(
z1

zi
, · · · , z

i−1

zi
,
zi+1

zi
, · · · , z

n+1

zi

)
.

Considering the transition map φj ◦ φ−1
i (where we assume i > j WLOG), we obtain

φj ◦ φ−1
i (z1, . . . , zn) =

(
z1

zj
, · · · , z

j−1

zj
,
zj+1

zj
, . . . ,

zi−1

zj
,
1

zj
,
zi+1

zj
, . . . ,

zn

zj

)
.
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This composition of charts is holomorphic. Hence, it determines a complex structure on Pn. The
coordinates [z0 : · · · : zn] are referred to as homogeneous coordinates.

More examples of complex manifolds may be proliferated out of previous complex manifolds.

Example 1.1.26. Given complex manifolds M1, . . . ,Mk of dimensions n1, . . . , nk respectively, we
may consider the product manifold, given by M := M1 × · · · ×Mk. The dimension of M is given
by the sum of each dimC(Mi), and its complex structure is provided by products of holomorphic
coordinate charts.

Example 1.1.27. Let | · | denote the Euclidean norm on Cn. The complex ball Bn := {z ∈ Cn :
|z| < 1} admits a complex structure given by the chart (Bn, IdBn), where IdBn denotes the identity
map on Bn. More generally, any open subset of Cn is a complex manifold.

Example 1.1.28. Let X denote a complex manifold and U ⊆ X be an open subset. An obvious
complex structure on U is then given by an atlas consisting of all holomorphic charts on X whose
domains are contained in U . This atlas is non-empty, as all points on U are contained in some
coordinate chart (W,φ). If we define V := U ∩ W , then (V, φ|V ) is a holomorphic chart on
U . Further, all transition maps between coordinate domains are holomorphic by construction.
Manifolds of this type are referred to as open complex submanifolds.

We provide examples of smooth manifolds that admit no complex structures.

Non-Example 1.1.29. Not all smooth manifolds admit complex structures. In odd dimensions,
this is impossible, and even in even dimensions there are smooth manifolds that admit no complex
structures - for instance, S4 cannot be given a complex structure. In fact, a theorem of Kirchoff
[Kir47] asserts that this extends to all spheres of dimension 8 or higher.

Remark 1.1.30. There is a unique complex structure on P1 and P2, meaning any complex manifold
diffeomorphic to Pn is biholomorphic to Pn for n = 1 or n = 2 [Yau77]. For n = 3, the uniqueness
of the complex structure on P3 is tied to whether S6 can be endowed with a complex structure.
The only spheres that possibly admit complex structures are S2 (which corresponds to P1) and S6.
Although S2 is known to be a complex manifold, it remains an open problem whether S6 admits a
holomorphic atlas.

Remark 1.1.31. By a theorem of Whitney, any smooth even (real) dimensional manifold admits
an analytic structure i.e., the transition maps are analytic [Whi36]. This extension however does
not hold for holomorphic atlases, S4 being a prominent example as described above. Hence, smooth
and even dimensional does not necessarily imply complex.

The regularity of an atlas - either smooth or holomorphic - allows us to consider the regularity of
maps between manifolds.

Definition 1.1.32. Let X and Y be a complex manifold with charts (Uα, φα) and (Vβ, ψβ) respec-
tively. A map f : X → Y is holomorphic if the composite map ψβ ◦ f ◦ φ−1

α is holomorphic on
φα(Uα) ⊂ Cn.

One may also consider the above in the smooth case, where we refer to a map f : X → Y as smooth
if the coordinate representation of f is also smooth. The space of all holomorphic functions on X
is denoted O(X). If a map f : X → Y is holomorphic, then we write f ∈ O(X,Y ). In the smooth
case, smooth K-valued functions (where K is a field) are denoted by C∞(X,K) and smooth maps
are denoted C∞(X,Y ). Maps between manifolds also allow us to define an equivalence of smooth
and holomorphic structures, as we see with the following.
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Definition 1.1.33. Let f : X → Y denote a map between complex manifolds. We say that f is
a biholomorphism if it is holomorphic, invertible, and has a holomorphic inverse. If there exists a
biholomorphism between X and Y , we say that X and Y are biholomorphic, denoted by X ≃ Y .

On the other hand, smooth structures are preserved via a diffeomorphism i.e., a smooth, invertible
map with a smooth inverse. A biholomorphism from a complex manifold to itself is referred to as
an automorphism. It is easy to check that the set of automorphisms on a complex manifold X form
a group under composition, which we denote Aut(X), called the automorphism group. A familiar
example is provided by Aut(D), furnished by rotations and Möbius transformations of the disk.
That is, maps of the form

e
√
−1θ α− z

1− αz
,

for θ ∈ R, α ∈ D. A particularly important subclass of complex manifolds arise when endowed with
a group structure.

Definition 1.1.34. A complex Lie group is complex manifold endowed with a group structure such
that the composition and inversion maps are holomorphic.

Example 1.1.35. Let V denote an n-dimensional vector space over C, considered as an abelian
group. A lattice Λ is a discrete, additive subgroup Λ ⊆ V generated by a set of 2n vectors, which
are linearly independent over R. Then, V/Λ forms a (complex) n-dimensional complex Lie group,
referred to as a complex torus. To show it is diffeomorphic to the n-torus, we may consider the
isomorphism of vector spaces A : R2n → V , given by A(ciei) = civi, where ei denotes the standard
basis vectors in R2n. If we consider the projection maps πR2n : R2n → R2n/Z2n and πV : V → V/Λ,
we see that A is constant on the fibres of πR2n . Similarly, A−1 is constant on the fibres of πV .
Hence, R2n/Z2n is diffeomorphic to V/Λ (see, e.g., [Lee13, p. 91]). Observing that R2n/Z2n is
diffeomorphic to the n-fold product S1 × · · · × S1, we obtain our result.

Remark 1.1.36. The above demonstrates that all complex tori are diffeomorphic to each other
regardless of the lattice. Not all complex tori are biholomorphic however.

Example 1.1.37. Consider the group Γ generated by the map z → 1
2z. The manifold H yielded

by quotienting Cn \ {0} by Γ is then referred to as a primary Hopf manifold. It may also be shown
that H = Cn \ {0}/Γ is diffeomorphic to S2n−1 × S1 (see e.g., [Lee24, p. 11]).

Example 1.1.38. A large number of complex Lie groups are furnished by the well-known theorem
of Bochner–Montgomery [BM47], which states that the automorphism group of a compact complex
manifold is a complex Lie group.

In complex geometry, it is a worthy goal to understand all compact complex manifolds up to biholo-
morphism. This story is complete in complex dimension 1 with the Riemann–Koebe uniformisation
theorem; given a compact Riemann surface Σ with genus g, we have that

(i) g = 0 ⇐⇒ Σ ≃ P1

(ii) g = 1 ⇐⇒ Σ ≃ C/Λ
(iii) g ≥ 2 ⇐⇒ Σ ≃ D/Γ, where Γ is a discrete subgroup of Aut(D) acting freely.

The classification of all compact complex surfaces (dimC = 2) was achieved by Enriques–Kodaira
[Enr49], [Kod63], [Kod68]. While classical proofs of the uniformisation theorem largely hinge on
harmonic analysis, the work of Enriques–Kodaira is build on the study of holomorphic curves i.e.,
holomorphic maps from Riemann surfaces to complex manifolds. We now discuss several important
examples of holomorphic curves.
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Example 1.1.39. Let X denote a complex manifold. A curve f : C → X is referred to as entire
if it is non-constant and holomorphic on all of C. Further, X is said to be Brody hyperbolic if it
admits no entire curves [Bro78]. A classical example of a Brody hyperbolic manifold is the unit
disk D ⊂ C; indeed, D admits no entire curves thanks to Liouville’s theorem.

Example 1.1.40. A rational curve is a non-constant holomorphic map from P1 to a complex
manifold X. The Fermat hypersurfaces of degree d ∈ N, given by

Ferd := {[z0 : · · · : zn] ∈ Pn : zd0 + · · ·+ zdn = 0}
support rational curves of the form fζ : P1 → Ferd, where fζ(u, v) := (u, v, ζu, ζv, 0 . . . , 0) and

ζd = −1. A complex manifold X is rationally connected if any two points on X lie in the image of
some rational curve. As P1 is the one-point compactification of C, if X admits a rational curve, then
it admits an entire curve. Consequently, rationally connected manifolds are not Brody hyperbolic.
Rational curves play a central role in many areas of complex geometry, making them fundamentally
important (see e.g., [BHPVdV04], [Rei87], [Voi03]).

Example 1.1.41. A non-constant holomorphic curve from the torus (complex dimension 1) to a
complex manifold is referred to as an elliptic curve.

It is helpful to examine constructions on complex manifolds that involve only the smooth structure,
as they may be naturally extended to the complex setting through complexification. As with regular
surfaces, it is natural to consider vectors that are tangent to a manifold at a point. A complex
manifold however does not necessarily lie in some ambient space, meaning we must define tangent
vectors intrinsically.

Definition 1.1.42. Let X be a complex manifold, and p ∈ X be a point. A linear map V :
C∞(X,R) → C∞(X,R) is called a derivation at p if it satisfies the Leibniz rule:

V (fg) = f(p)V (g) + g(p)V (f).

The space of all derivations at p, denoted TpX is referred to as the tangent space of X at p.

A basis at TaR2n is given by the 2n derivations ∂
∂x1 |a, . . . , ∂

∂x2n |a where

∂

∂xi

∣∣∣∣
a

f =
∂f

∂xi
(a)

for 1 ≤ i ≤ 2n.

The above definition does not rely on X living in some ambient space. Further, we observe that
TpX forms a vector space since derivations are linear. Given a smooth map f : X → Y , a linear
approximation of f is induced between tangent spaces. This map is called the differential:

Definition 1.1.43. Let f : X → Y be a smooth map between complex manifolds. At a point
p ∈ X, the induced map between the tangent spaces dfp : TpX → Tf(p)Y is referred to as the
differential of f at p, and is given by

dfp(V )(g) = V (g ◦ f)
where V ∈ TpX, g ∈ C∞(X,R), and g ∈ C∞(Y,R).

Given a diffeomorphism f : X → Y , its differential dfp at p ∈ X is a vector space isomorphism.
Suppose that dimR(X) = 2n and admits local coordinates (x1, . . . x2n) under the chart (U,φ).
Since φ may be thought of as a diffeomorphism from U to φ(U), we obtain that TpU ≃ Tφ(p)φ(U)
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as vector spaces. Further, as the differential of the inclusion map U ↪→ X is also a vector space
isomorphism (see, e.g., [Lee13]), we have TpX ≃ Tφ(p)R2n. We then see that TpX is 2n-dimensional,

and admits the basis ∂
∂x1 |p, . . . , ∂

∂x2n |p.

Definition 1.1.44. Let f : X → Y be a smooth map between complex manifolds. We say that f
is

(i) an immersion if dfp is injective for all p ∈ X.
(ii) a submersion if dfp is surjective for all p ∈ X.
(iii) an embedding if f is an immersion and homeomorphic onto its image.

Definition 1.1.45. Let X and Y be complex manifolds. We say that X is a complex submanifold
of Y if there exists a holomorphic embedding X ↪→ Y .

Remark 1.1.46. All complex manifolds admit a smooth embedding into Rn for some n ∈ N by
the Whitney embedding theorem [Whi44]. If we instead require the embedding to be holomorphic
into Cn, the theorem fails in a spectacular fashion: if X is a compact, complex manifold, then
there is no holomorphic embedding into Cn for any n ∈ N, unless X is a point. Indeed, if such
an embedding exists, the coordinate functions on Cn would restrict to holomorphic functions on
a compact set. Hence, they are all constant by the maximum modulus principle. A holomorphic
analogue for the Whitney embedding theorem is the Kodaira embedding theorem [Kod54], which
allows complex manifolds that are compact (along with some other topological conditions) to be
embedded into Pn for some n ∈ N.

The complex manifolds for which a holomorphic embedding into Cn or Pn exists form important
subclasses.

Definition 1.1.47. A complex manifold S is said to be Stein if there is a holomorphic embedding
S ↪→ Cn for some n ∈ N.

Example 1.1.48. An open subset of Cn which is non-compact is a Stein manifold; the unit ball
Bn, Cn\{0} and the upper half-plane H := {x+

√
−1y : y > 0} are all familiar examples. Further, a

theorem of Behnke–Stein [BS47] asserts that all non-compact Riemann surfaces are Stein manifolds.
In particular, C/Λ with a point removed is a Stein manifold.

Definition 1.1.49. A complex manifold X is said to be projective if there is a holomorphic em-
bedding X ↪→ Pn for some n ∈ N.

Example 1.1.50. We have already encountered an example of a projective manifold with the
Fermat hypersurfaces. These manifolds fall into a larger class of projective manifolds which arise
zero sets of homogeneous polynomials in projective space without singularities, known as smooth
projective varieties. In fact, a well-known theorem of Chow [Cho49] asserts that projective manifolds
are equivalent to smooth projective varieties. As they are outside the scope of this thesis, we invite
the reader to consult [GH94] for a thorough treatment of the topic.

1.2. Holomorphic Vector Bundles. The following class of submersions will prove vital through-
out the project.

Definition 1.2.1. Let X be a complex manifold, and E be a smooth manifold. We refer to
π : E → X as a smooth vector bundle of rank k if each fibre Ep := π−1(p) ≃ Rk, and for all
p ∈ X, and in every neighbourhood of p, there exists some open neighbourhood U and a map
φ : π−1(U) → U × Ck such that φ is a diffeomorphism.
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A rank k vector bundle π : E → X is referred to as topologically trivial if E is homeomorphic to
X × Rk. Hence, in the above definition, each φ is referred to as a trivialising chart. The map
π : E → X is called the projection. Namely, it is from the total space E to the base X.

A vector bundle allows us to associate each point p on the base X with an element in the fibre of p.
This association is referred to as a section: a continuous map σ : U ⊆ X → E such that π ◦σ = Id.
If σ is a smooth map, then it is called a smooth section. The space of all smooth sections of a vector
bundle E → X is denoted Γ(E). Given a collection of smooth sections (σ1, . . . , σk) over U ⊆ X,
we say that it is a (local) frame for E over U if (σ1(p), . . . , σk(p)) is a basis for Ep for each p ∈ U .

Example 1.2.2. Let X be a complex manifold with dimR(X) = 2n. We define the tangent bundle
TX by

TX :=
⊔
p∈M

TpX.

The fibre at p is TpX, which is isomorphic to R2n as shown prior. Further, the tangent bundle itself
is a 4n (real) dimensional smooth manifold, as we may leverage the smooth manifold structure on
X: given a coordinate chart (U,φ) on X, with local coordinates (xi), we define the charts

φ̃ : π−1(U) → R4n, φ̃

(
vi

∂

∂xi

∣∣∣∣
p

)
= (φ(p), v1, . . . , v2n)

where p ∈ U and vi ∈ R2n. We may define the trivialising charts in a similar fashion, given by
φ̃(vi ∂

∂xi |p) = (p, v1, . . . , v2n). It is trivial to check that the conditions for TX to be a smooth vector
bundle are satisfied. The smooth sections of TX are called smooth vector fields.

Example 1.2.3. The cotangent bundle T ∗X is given by

T ∗X :=
⊔
p∈X

T ∗
pX

where T ∗
pX denotes the dual vector space of TpX. Given a chart (U,φ) on X with local coordinates

(xi), T ∗X is locally framed by (dx1, . . . , dx2n). Smooth sections of T ∗X are referred to as 1-forms.

Recall that we may proliferate vector spaces using the usual operations of the direct sum, the tensor
product, and dualising. These operations are easily extendable to vector bundles.

Definition 1.2.4. Let E,F → X be smooth vector bundles over a complex manifold X. We define
the

(i) direct sum bundle E ⊕ F → X as the vector bundle with fibres Ep ⊕ Fp for each p ∈ X.
(ii) tensor bundle E ⊗ F → X as the vector bundle with fibres Ep ⊗ Fp for each p ∈ X.
(iii) dual bundle E∗ as the vector bundle with fibres (Ep)

∗ for each p ∈ X.

The following vector bundle will prove important throughout this project.

Definition 1.2.5. Let f : X → Y be a smooth map between complex manifolds, and E → Y be
a smooth vector bundle. The pullback bundle is the vector bundle over X defined as

f∗E :=
⊔
p∈X

Ef(p) = {(p, e) ∈ X × E : f(p) = π(e)}.
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Reminder 1.2.6. Tensors

Let V be an n-dimensional vector space over R. A covariant k-tensor is an element of the k-fold
tensor product V ∗ ⊗ · · · ⊗ V ∗ i.e., a real-valued, multi-linear function α given by

α : V × · · · × V︸ ︷︷ ︸
k times

→ R.

Conversely, a contravariant k-tensor is an element of the k-fold tensor product V ⊗ · · · ⊗ V i.e., a
real-valued, multi-linear function ω given by

ω : V ∗ × · · · × V ∗︸ ︷︷ ︸
k times

→ R.

More generally, given k, ℓ ∈ Z≥0, we say that α is of type (k, ℓ) if it is an element of

V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
ℓ times

or put simply, it is a real-valued, multi-linear function with ℓ inputs in V , and k inputs in V ∗.
The space of all tensors of type (k, ℓ) is denoted T (k,ℓ)(V ). Given a basis {ei}ni=1 for V with

corresponding dual basis {εi}ni=1, we may define a basis for T (k,ℓ)(V ) given by

ej1 ⊗ · · · ⊗ ejℓ ⊗ εi1 ⊗ · · · ⊗ εik .

Hence, we may write any tensor α of type (k, ℓ) as

α = αj1...jℓ
i1...ikej1 ⊗ · · · ⊗ ejℓ ⊗ εi1 ⊗ · · · ⊗ εik

where αj1...jℓ
i1...ik = α(εj1 , . . . , εjℓ , ei1 , . . . , eik). The trace of α can also be considered, defined as

the (k − 1, ℓ− 1) tensor

tripjq(α) = αj1...jq−1mjq+1...jℓ
i1...ip−1mip+1...ikej1 ⊗ · · · ⊗ ejq−1 ⊗ ejq+1 ⊗ · · · ⊗ ejℓ

⊗ εi1 ⊗ · · · ⊗ εip−1 ⊗ εip+1 ⊗ · · · ⊗ εik .

In the above case, we say that α has been contracted over the indices ip, jq. We say that covariant
k-tensor α is alternating if interchanging any of the two inputs changes the sign of the tensor. An
example of such a tensor is the determinant, where interchanging two columns changes its sign.
We denote the space of all covariant alternating k-tensors on V by Λk(V ∗), referred to as the kth
exterior power of V ∗. If permuting any two inputs of a tensor does not change its sign, it is referred
to as symmetric. An example of such a tensor is an inner product on a vector space V , which is a
symmetric covariant 2-tensor.

Extending the notion of an alternating tensor to a manifold, we may define the bundle

Λk(T ∗X) :=
⊔
p∈X

Λk(T ∗
pX).

Considering the sections of this bundle, we obtain the following.

Definition 1.2.7. Let X be a complex manifold. We refer to smooth sections of Λk(T ∗X) as
k-forms. The space of all k-forms on X is denoted by Ωk(X).

The notion of a k-form may also be extended to consider outputs in the total space of a vector
bundle E → X. Hence, we define an E-valued k-form as a smooth section of E ⊗ Λk(T ∗X). The
space of all such forms is denoted Ωk(X,E).
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Definition 1.2.8. Let X be a complex manifold. The (k,ℓ) tensor bundle T (k,ℓ)(X) → X is given
by

T (k,ℓ)(X) :=
⊔
p∈X

T (k,ℓ)(TpX).

Sections of T (k,ℓ)(M) are referred to as (k,ℓ)-tensor fields, or simply (k,ℓ)-tensors.

Covariant tensor fields play a crucial role in this project. Let f : X → Y be a smooth map and α
be a covariant k-tensor field on Y . We can construct a corresponding covariant k-tensor field on X
by defining the pullback of α by f , denoted f∗α and given by

(f∗α)p(v1, . . . , vk) = α(dfp(v1), . . . dfp(vk))

for each p ∈ X and v1, . . . , vk ∈ TpY .

Reminder 1.2.9. The Exterior Algebra. We say that an algebra A is graded if it admits a
decomposition into the direct sum

⊕∞
k∈ZA

k, where Ak are algebras such that AkAℓ ⊆ Ak+ℓ. The
exterior algebra Λ•(V ∗) is defined as the vector space

Λ•(V ∗) :=
n⊕

k=0

Λk(V ∗).

When equipped with the wedge product, Λ•(V ∗) admits the structure of a graded algebra. Indeed,
we are afforded this decomposition by identifying Ak = Λk(V ∗) for 0 ≤ k ≤ n, and Ak = {0}
otherwise.

The grading of the exterior algebra may be extended to the space of forms:

Ω•(X) =
n⊕

k=0

Ωk(X).

Definition 1.2.10. Let X be a complex manifold. The exterior derivative is defined as the unique
R-linear mapping

d : Ω•(X) → Ω•(X)

such that

(i) d : Ωk(X) → Ωk+1(X)
(ii) d(f) = df (the differential of f) for f ∈ C∞(X,R)
(iii) If σ ∈ Ωk(X), τ ∈ Ωℓ(X), then

d(σ ∧ τ) = dσ ∧ τ + (−1)kσ ∧ dτ
(iv) d2 = 0

Let (xi) denote smooth coordinates on a complex manifold X. We may write a k-form ω in these
coordinates as fdxi1 ∧ . . . dxik , where f ∈ C∞(X,R) and 1 ≤ ip ≤ dimR(X) for 1 ≤ p ≤ k. The
definition of the exterior derivative then yields that

dω =
∑
i

∂f

∂xi
dxi ∧ dxi1 ∧ . . . dxik .

The exterior derivative on complex manifolds induces a cochain complex on the space of forms i.e.,
(Ω•(X), d) forms the sequence

C∞(X,R) d−→ Ω1(X)
d−→ Ω2(X)

d−→ . . .
d−→ Ωk(X)

d−→ Ωk+1(X)
d−→ . . .
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such that d2 = 0. Cochain complexes give rise to cohomologies, where in this case we recover the
de Rham cohomology. The pth de Rham cohomology group is

Hp
dR(X,R) :=

ker{d : Ωp(X) → Ωp+1(X)}
im{d : Ωp−1(X) → Ωp(X)}

.

For k ∈ N, the kth Betti number is defined as bk(X) := dimRH
p
dR(X,R).

Definition 1.2.11. Let α ∈ Ωk(X), where X denotes a complex manifold. We say α is closed if
dα = 0. If there exists β ∈ Ωk−1(X) such that dβ = α, then α is referred to as exact.

Remark 1.2.12. By the nilpotence property of the exterior derivative (d2 = 0), every exact form
is closed. The failure for the converse to hold is measured by the de Rham cohomology group. On
the other hand, the Poincaré lemma gives sufficient conditions for a closed differential form to be
exact.

We now extend these constructions through complexification. By a theorem of Newlander–Nirenberg
[NN57], we may recover the complex structure on a complex manifold X from an endomorphism
J : TX → TX satisyfing J2 = −Id and subject to an integrability condition. In particular, the
relation J2 = −Id yields the eigenvalues of J being ±

√
−1. This prompts us to complexify the

tangent bundle:

TCX :=
⊔
p∈X

TpX ⊗R C.

That is, TCX is obtained through complexifying over the fibres. The J map therefore induces a
splitting of TCX into eigenbundles of eigenvalues ±

√
−1:

TCX = T 1,0X ⊕ T 0,1X.

We refer to T 1,0X (the +
√
−1 eigenbundle) and T 0,1X (the −

√
−1 eigenbundle) as the holomor-

phic and antiholomorphic tangent bundles respectively. These bundles can be locally framed by
coordinate frames ∂

∂zi
and ∂

∂zi
respectively. We may also characterise these bundles by

T 1,0X = {v −
√
−1Jv : v ∈ TX}, T 0,1X = {v +

√
−1Jv : v ∈ TX}.

This splitting is also induced on the complexified cotangent bundle T ∗
CX, which decomposes into

Λ1,0(X)⊕ Λ0,1(X), where Λ1,0(X) and Λ0,1(X) denote the bundles of (1, 0)-forms and (0, 1)-forms
respectively. A (1, 0)-form on X is a complex-valued 1-form ξ such that ξ(v) = 0 for all v ∈ T 0,1X.
A (0, 1)-form η is similarly defined, with η(v) = 0 for all v ∈ T 1,0X. We let Λk,0(X) and Λ0,q(X)
denote the kth and qth exterior power of Λ1,0(X) and Λ0,1(X) respectively. We define Λp,q(X) :=
Λp,0(X)⊗ Λ0,q(X). For vector bundles E,F over a manifold of dimension n,

Λk(E ⊕ F ) =

n⊕
i=0

Λi(E)⊗ Λk−i(F ).

The splitting on T ∗
CX then reduces the above to

Λk
C(T

∗
CX) =

⊕
p+q=k

Λp,q(X)

Definition 1.2.13. Let X be a complex manifold. For 0 ≤ p, q ≤ n = dimCX, we define (p,q)-
forms as smooth sections of Λp,q(X). We denote the space of all such forms as Ωp,q(X).

Definition 1.2.14. Let ω ∈ Ω(p,p)(X) be a real (p, p)-form (i.e., invariant under conjugation). We
say ω is positive if

(−
√
−1)pα(v1, v1, . . . , vp, vp) > 0

for any set of linearly independent (over C) vectors v1, . . . , vp.
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The space of complex-valued k-forms is afforded a splitting into (p, q)-forms

Ωk
C(X) =

⊕
p+q=k

Ωp,q(X)

where Ωk
C(X) = Ωk(X) ⊗R C. Choosing holomorphic coordinates {zi} on X, a (p, q)-form α may

be then locally given by

α =
∑

1≤i1≤···≤ip≤n

∑
1≤j1≤···≤jq≤n

fi1...ip,j1,...,jqdz
1 ∧ . . . dzp ∧ dz1 · · · ∧ dzq.

If the component functions are holomorphic, we refer to α as a holomorphic (p,q)-form. The
presence of an almost complex structure induces a bigrading on the exterior algebra.

Λ•
C(T

∗
CX) =

n⊕
k=0

⊕
p+q=k

Λp,q(X).

This bigrading is also afforded to the algebra of complex-valued forms.

Ω•
C(X) =

n⊕
k=0

⊕
p+q=k

Ωp,q(X).

We consider the complex-linear extension of the exterior derivative d to Ω•
C(X). The complex

structure induces a splitting of d into two natural operators.

Definition 1.2.15. Let d : Ωk
C(X) → Ωk+1

C (X) denote the usual exterior derivative on complex-

valued k-forms. We define the Dolbeault operators ∂ : Ωp,q(X) → Ωp+1,q(X) and ∂ : Ωp,q(X) →
Ωp,q+1(X) as

∂ := πp+1,q ◦ d, ∂ := πp,q+1 ◦ d
where πp+1,q : Ωk+1

C (X) → Ωp+1,q(X) and πp,q+1 : Ωk+1
C (X) → Ωp,q+1(X) denote the natural

projection maps.

Remark 1.2.16. The Dolbeault operators provide an equivalent definition of holomorphy: a C1

complex-valued function from a complex manifold f : X → C is holomorphic if and only if ∂f van-
ishes identically. This is due to the equation ∂f = 0 merely being the Cauchy–Riemann equations.

Proposition 1.2.17 ([Lee24, p. 106]). The Dolbeault operators support the identity

0 = ∂2 = ∂
2
= ∂∂ + ∂∂

Proof. First observe that d = ∂ + ∂. Since d2 = 0, we have that 0 = (∂ + ∂)2 = ∂2 + ∂
2
+ ∂∂ + ∂∂.

Since all terms in the sum take values in different vector bundles, they all equate to 0. □

As with the exterior derivative, the antiholomorphic Dolbeault operator also induces a cochain

complex on the space of (p, q)-forms, as ∂
2
= 0 and we have the sequence

Ωp,0(X)
∂−→ Ωp,1(X)

∂−→ . . .
∂−→ Ωp,q(X)

∂−→ Ωp,q+1(X)
∂−→ . . .

Definition 1.2.18. Let X be a complex manifold and ∂ denote the Dolbeault operator on Ωp,q(X).
The (p,q) Dolbeault cohomology group is given by

Hp,q

∂
(X) :=

ker{∂ : Ωp,q(X) → Ωp,q+1(X)}
im{∂ : Ωp,q−1(X) → Ωp,q(X)}

.

We define the Hodge numbers as hp,q(X) := dimCH
p,q

∂
(X)
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In order to study the geometry of complex manifolds, it becomes apparent we must consider metrics
on vector bundles. To this end, we begin with the following.

Definition 1.2.19. Let X be a complex manifold, and E be a smooth manifold. We refer to
π : E → X as a holomorphic vector bundle of rank k if each fibre Ep := π−1(p) is isomorphic to

Ck as vector spaces, and for all p ∈ X, and in every neighbourhood of p, there exists some open
neighbourhood U and a map φ : π−1(U) → U × Ck such that φ is a biholomorphism.

It should be noted that an equivalent definition for a holomorphic vector bundle is that the transition
maps for any pair of trivialising charts (on which their domains agree) are holomorphic.

Example 1.2.20. Let X be a complex manifold. The bundle T 1,0X is a holomorphic vector
bundle. The holomorphic sections of T 1,0X are referred to as holomorphic vector fields.

Example 1.2.21. Let dimC(X) = n. A holomorphic vector bundle L → X of rank 1 is referred to
as a holomorphic line bundle. The most important example of a holomorphic line bundle is given
to us by the canonical bundle KX := Λn,0(X). The local holomorphic sections of KX are given by

ω = f(z)dz1 ∧ · · · ∧ dzn

where f is a locally defined holomorphic function. In the case of compact Riemann surfaces, the
holomorphic sections of KX is precisely the space of (1, 0)-forms Ω(1,0)(X). The canonical bundle
is intimately connected with the genus g; using the Riemann–Roch theorem, one may demonstrate
that dimCH

0(X,KX) = g.

As previously mentioned, considering the holomorphic functions on a complex manifold may be a
fruitless endeavour, particularly if the manifold is compact. Hence, it is useful to instead consider
sections of KX . To this end, consider the map Φ : X → Pn for some n, given by

x 7→ [σ0(x) : · · · : σn(x)],
where σ0, . . . , σn are holomorphic sections of KX . If Φ defines an embedding for some n, we refer
to the canonical bundle as very ample. Further, we refer to KX as ample if there exists k ∈ N such
that L⊗k is very ample.

Definition 1.2.22. Let E → X be a complex vector bundle over a complex manifold X. A
first-order C-linear differential operator

∂
E
: Γ(E) → Ω0,1(X)⊗ Γ(E)

is said to be a pseudoholomorphic structure if it satisfies the following variant of the Leibniz rule:

∂
E
(fσ) = ∂f ⊗ σ + f∂

E
(σ)

where f ∈ C∞(X,C), σ ∈ Γ(E) is a smooth section, and ∂ : C∞(X,C) → Ω0,1(X) is the Dolbeault

operator in Definition 1.2.15. If (∂
E
)2 = 0, then ∂

E
is called a holomorphic structure (or a Dolbeault

operator).

A section σ in a pseudoholomorphic vector bundle (E, ∂
E
) is called holomorphic if ∂

E
σ = 0. The

space of holomorphic sections of E is denoted by H0(E). This choice in nomenclature hints at a
link between our two notions of “holomorphic” for a vector bundle. Indeed, the following theorem
proven by Koszul & Malgrange [KM58] shows that a holomorphic vector bundle and a complex
vector bundle with a holomorphic structure actually coincide.

Theorem 1.2.23 (Koszul–Malgrange, [KM58]). Let X be a complex manifold. A complex vector
bundle E → X is holomorphic vector bundle if and only if it has a holomorphic structure ∂.
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The proof of Koszul–Malgrange does not contribute further to our discussion of holomorphic vector
bundles, therefore we omit it (see [DK90],[BGM71] for details). The Koszul–Malgrange theorem
is highly significant for studying holomorphic vector bundles; we now have access to a differential
operator that allows us to work independent of the coordinate system in an easy fashion.

1.3. Hermitian Structures on Holomorphic Vector Bundles. In the following definition, we
let X be a complex manifold and E → X be a complex vector bundle. We denote Ω1

C(X,E) :=
Ω1(X,E)⊗RC, where Ω1(X,E) is the bundle of E-valued 1-forms. The bundle Ω1

C(X,E) is referred
to as the E-valued complex 1-forms. The complex structure also induces a splitting of this bundle
similar to that of (p, q)-forms on the complexified tangent bundle.

Definition 1.3.1. A connection on E is a C-linear differential operator ∇ : Γ(E) → Ω1
C(X,E)

such that for all f, g ∈ C∞(X,C), u, v ∈ Γ(TCX) and σ ∈ Γ(E)

(i) it is C∞-linear in the first variable

∇fu+gv(σ) = f∇uσ + g∇vσ

(ii) it satisfies the Leibniz rule:

∇u(fσ) = u(f)σ + f∇uσ

Given a local coordinate frame ∂i :=
∂
∂zi

, we may consider the Christoffel symbols of our connection

∇, defined by the equation∇∂i∂j = Γk
ij∂k. If we use the antiholomorphic coordinate frame ∂i :=

∂
∂zi

,

we bar that index i.e., ∇∂i
∂j = Γk

ij
∂k.

Example 1.3.2. Let ∇ be a connection on E → Y and f : X → Y be a smooth map between
complex manifolds. The pullback connection on f∗E, denoted f∗∇, is given by

f∗∇Z(ω ◦ f) := ∇df(Z)ω

where Z ∈ Γ(TCX) and ω ∈ Γ(E).

Example 1.3.3. Let E → X be a complex vector bundle with connection ∇. The dual connection
on E∗, denoted ∇∗, is defined by

(∇∗
Zω)(Y ) := X(ω(Y ))− ω(∇XY )

where Z ∈ Γ(TCX), ω ∈ Γ(E∗) and Y ∈ Γ(E).

Observe that the above example essentially forces the product rule necessary for ∇∗ to be a con-
nection.

Example 1.3.4. Given connections ∇1,∇2 on complex vector bundles E1, E2 → X respectively,
the tensor product connection on E1 ⊗ E2 is given by

∇Z(ω ⊗ η) := ∇1
Zω ⊗ η + ω ⊗∇2

Zη

where ω ∈ Γ(E1), η ∈ Γ(E2) and Z ∈ Γ(TCX). Here, we use the identification Γ(E1 ⊗ E2) =
Γ(E1)⊗ Γ(E1).

We may split a connection ∇ into its (1,0) and (0,1) parts:

∇1,0 := π1,0 ◦ ∇, ∇0,1 := π0,1 ◦ ∇
where π1,0 : Ω1

C(X,E) → Ω1,0(X,E) and π0,1 : Ω1
C(X,E) → Ω0,1(X,E) denote the usual projection

maps.
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Definition 1.3.5. Let E → X be a holomorphic vector bundle over a complex manifold X. Let
∇ be a connection on E. The curvature RE is the End(E)-valued 2-form defined by

RE(ξ, η)σ := ∇ξ∇ησ −∇η∇ξσ −∇[ξ,η]σ

where ξ, η ∈ Γ(TCX) and σ ∈ Γ(E).

Let {∂i} denote a local coordinate frame on T 1,0X, {ϕα} denote a smooth local frame on E. Then,

we may express the coefficients of this form, denoted RE
ijα

β
, defined by

R(∂i, ∂j)ϕα = RE
ijα

β
ϕβ.

Definition 1.3.6. Let E → X be a holomorphic vector bundle over a complex manifold X. A
Hermitian fibre metric h on E is a family of Hermitian inner products hp : Ep ×Ep → C smoothly
parameterised by p ∈ X. A holomorphic vector bundle endowed with a Hermitian fibre metric is
referred to as a Hermitian vector bundle.

Endowing a holomorphic vector bundle with a Hermitian fibre metric allows us to consider RE as
a scalar-valued map, by setting

RE(ξ, η, σ, τ) := ⟨RE(ξ, η)σ, τ⟩
where ξ, η ∈ Γ(TCX) and σ, τ ∈ Γ(E). We may therefore define the components of this map to be

RE
ijαβ

:= RE(∂i, ∂j , ϕα, ϕβ)

where the same notation is used as before. Lowering the index yields that RE
ijαβ

= hγβR
E
ijα

γ
, where

hγβ := h(ϕγ , ϕβ). We may also define the connection coefficients Γβ
iα as ∇∂iϕα := Γβ

iαϕβ.

Definition 1.3.7. A connection on a Hermitian vector bundle is called Hermitian if it is compatible
the Hermitian fibre metric h i.e., ∇h = 0.

Proposition 1.3.8. Let X denote a complex manifold. If ∇ on T 1,0X is Hermitian, then

∇ ∂

∂zi

∂

∂zj
= ∇ ∂

∂zi

∂

∂zj
.

Proof. Let (x1, . . . , xn, y1, . . . , yn) denote smooth local coordinate son X, and write ∂
∂zi

as ∂
∂xi −√

−1J ∂
∂yi

. The following is a consequence of the linearity of ∇ and ∇X(JY ) = J∇XY for all

X,Y ∈ TCX.

∇ ∂

∂zi

∂

∂zj
= ∇∂xi−

√
−1J∂yi

(∂xj +
√
−1J∂yj )

= ∇∂xi
∂xj −

√
−1∇J∂yi

∂xj + J(∇J∂yi
∂yj ) +

√
−1J(∇∂xi

∂yj )

We calculate ∇ ∂

∂zi

∂
∂zj

in a similar fashion.

∇ ∂

∂zi

∂

∂zj
= ∇∂xi+

√
−1J∂yi

(∂xj −
√
−1J∂yj )

= ∇∂xi
∂xj +

√
−1∇J∂yi

∂xj −
√
−1J∇∂xi

∂yj + J(∇J∂yi
∂yj ).

We note that ∇∂xi
∂xj and ∇∂yi

∂yj are both real vector fields. Hence, conjugating yields the

result. □
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Definition 1.3.9. Let X be a complex manifold. The torsion T of a Hermitian connection ∇ on
TCX is defined by

T (u, v) = ∇uv −∇vu− [u, v], u, v ∈ T 1,0X

We may express the components of this tensor in the local frame {∂i}, which we define as

T k
ij := Γk

ij − Γk
ji

We remind ourselves that imbuing a connection on the tangent bundle with metric compatibility
and vanishing torsion yields a unique structure called the Levi-Civita connection. This connection
is ill-fitting for complex manifolds however, as we shall see it rather restrictive on the complex
structure (see Proposition 1.4.3). As we observe with Theorem 1.3.12, a connection useful for
Hermitian geometry must be given different attributes. In order to construct this connection, we
briefly discuss the Cartan theory of connections.

Definition 1.3.10. Let ∇ be a connection on a holomorphic vector bundle E → X over a complex
manifold X. The connection matrix for ∇ (relative to a local frame {ϕi} for E) is the matrix
ω = (ωi

j) of 1-forms given by

∇Xϕj =
∑
j

ωi
j(X)ϕj

for all X ∈ TX.

One may extend the definition of the connection ∇ to E-valued p-forms by forcing the Leibniz rule

∇(ω ⊗ σ) := dω ⊗ σ + (−1)pω ∧∇σ
where ω ∈ Ωp(E) and σ ∈ Γ(E).

Definition 1.3.11. Let ∇ be a connection on a holomorphic vector bundle E → X over a complex
manifold X. The curvature matrix for ∇ (relative to a local frame {ϕi} for E) is the matrix
Θ = (Θi

j) of 2-forms given by

∇X(∇Y ϕj) =
∑
i

Θi
j(X,Y )ϕi

for all X,Y ∈ TX.

It is a straightforward computation to observe that the curvature and connection forms are related
by the Cartan structural equations, which are given in a local coordinate frame by

Θi
j = dωi

j + ωi
k ∧ ωk

j ,

where Einstein summation notation is used.

Theorem 1.3.12 ([Bal06, p. 37]). Let E be a Hermitian vector bundle on a complex manifold X
with Hermitian fibre metric h on E. Then there exists a unique compatible connection ∇ on E,
such that ∇0,1 = ∂.

Proof. We first prove uniqueness. Assume that ∇ on E satisfies the conditions prescribed. Let ων
µ

be the connection forms for ω. First observe that ω is a (1,0)-form. Indeed, take a holomorphic
frame {ϕα}, thus defining our connection forms as ∇ϕµ = ων

µϕν . Evaluating this explicitly, we
obtain

∇ϕµ = ∇1,0ϕµ +∇0,1ϕµ = ∇1,0ϕµ + ∂ϕµ = ∇1,0ϕµ ∈ Λ1,0(E).
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We now consider dh(ϕα, ϕβ). Let hαβ = h(ϕα, ϕβ). Since ∇h = 0, we have

dh(ϕα, ϕβ) = h(∇ϕα, ϕβ) + h(ϕα,∇ϕβ)
= h(ωγ

αϕγ , ϕβ) + h(ϕα, ω
γ
βϕγ)

= ωγ
αhγβ + ωγ

βhγα.

Since dh(ϕα, ϕβ) = ∂hαβ + ∂hαβ and ω is a (1,0)-form, we may compare both sides of the equation

to obtain
ω = h−1 · ∂h

Since this expression only depends on h, we therefore have that∇ is uniquely determined. Existence
now follows from defining ω as per above, which is well-defined as it is independent of the choice
of frame. We now show that it is hermitian and that ∇0,1 = ∂. Let σ = σαϕα be a smooth section
of E. Then,

∇(σαϕα) = dσα ⊗ ϕα + σα∇ϕα
= (∂σα + ∂σα)⊗ ϕα + σαωγ

αϕγ .

Since ω is a (1, 0)-form by construction, we have that ∇0,1 = ∂. We now prove metric compatability.
Let {∂i} denote the coordinate frame on TCX. Consider h(∇∂kϕα, ϕβ) + h(ϕα,∇∂k

ϕβ). Since ϕα is

a holomorphic frame and ∇0,1 = ∂, we have that ∇∂k
ϕβ = ∂(ϕβ) = 0. Hence,

h(∇∂kϕα, ϕβ) + h(ϕα,∇∂k
ϕβ) = h(Γγ

kαϕγ , ϕβ) = hγβ(h
γδ∂khαδ) = ∂kh(ϕα, ϕβ).

where the Christoffel symbols are easily calculated via the relation ω = h−1 · ∂h. This implies that
∇ is hermitian. □

Definition 1.3.13. The connection∇ on E given by Theorem 1.3.12 is called the Chern connection.

The only non-trivial Christoffel symbols of the Chern connection are Γβ
iα and Γβ

iα
.

Example 1.3.14. Let (L, h) → X be a holomorphic line bundle over a complex manifold with
Hermitian fibre metric h. Further, we let ∇ denote the corresponding Chern connection of (L, h) →
X. The proof of the Chern connection demonstrates that the connection matrix ω is given by
h−1 · ∂h = ∂ log(h). Hence, the curvature matrix Θ(L,h) is given by

Θ(L,h) = dω + ω ∧ ω = dω = ∂∂ log(h) = −∂∂ log(h).

Remark 1.3.15. Since a Hermitian metric on a line bundle L → X is completely determined by
a strictly positive function, it is customary to write h = e−φ for some smooth function φ on X.
Computing the curvature explicitly, we obtain

Θ(L,h) = ∂∂φ.

Hence, Θ(L,h) is a positive (1, 1)-form if φ is plurisubharmonic. Any such line bundle where Θ is
positive is referred to as a positive line bundle.

We now remind ourselves of a particularly important class of covariant tensor fields.

Reminder 1.3.16 (Riemannian metrics). Let M be a smooth manifold. A Riemannian metric

g on M is a smooth section of T (0,2)(M) which is symmetric and positive definite. A smooth
manifold equipped with a Riemannian metric is referred to as a Riemannian manifold.

If X is a complex manifold, it is natural to impose the following condition.
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Definition 1.3.17. Let (X, J) be a complex manifold. A Riemannian metric g on X is called
Hermitian if

g(Ju, Jv) = g(u, v)

for all u, v ∈ TX. The pair (X, g) is referred to as a Hermitian manifold. The associated (1,1)-form
of a Hermitian metric g is defined by

ω(u, v) := g(Ju, v).

Proposition 1.3.18 ([Bro22c, p. 78]). All complex manifolds admit a Hermitian metric.

Proof. We leverage the fact that all manifolds admit a Riemannian metric g and define ĝ by

ĝ(u, v) := g(u, v) + g(Ju, Jv).

This is a Hermitian metric by construction. □

Given a Hermitian metric and complex structure, a unique Hermitian fibre metric may be con-
structed on the holomorphic tangent bundle.

Proposition 1.3.19 ([Bro22c, p. 79]). Let (X, g) be a Hermitian manifold. Then, we may define
a Hermitian fibre metric h : T 1,0X × T 1,0X → C by Re(h) = g, Im(h) = −ω.

Proof. Let {x1, . . . xn, xn+1, . . . x2n} denote smooth (real-valued) local coordinates on X. Introduce
the notation I := i+n to apply the Einstein summation convention. Assume the complex structure
acts according to

J

(
∂

∂xi

)
=

∂

∂xI
, J

(
∂

∂xI

)
= − ∂

∂xi
.

In these coordinates, the Riemannian metric reads

g = gikdx
i ⊗ dxk + giKdx

i ⊗ dxK + gIkdx
I ⊗ dxk + gIKdx

I ⊗ dxK

From the compatibility condition g(u, v) = g(Ju, Jv), we have

gik = gIK , giK = gKi = −gkI = −gIk.

Introduce the following complex coordinates {zi, zi} on X, given by

zi = xi +
√
−1xI , zi = xi −

√
−1xI .

Then dzi = dxi +
√
−1dxI and dzi = dxi −

√
−1dxI , and hence,

∂

∂zi
=

1

2

(
∂

∂xi
−
√
−1

∂

∂xI

)
,

∂

∂zi
=

1

2

(
∂

∂xi
+
√
−1

∂

∂xI

)
We note that

h

(
∂

∂zi
,
∂

∂zj

)
= h

(
∂

∂zi
,
∂

∂zj

)
= 0.

Moreover,

hij := h

(
∂

∂zi
,
∂

∂zj

)
= gij −

√
−1gJi.

This implies that h is non-degenerate on T 1,0X, meaning that it defines a Hermitian fibre metric.
That gJi = g

(
J ∂

∂xi ,
∂

∂xj

)
proves the proposition. □
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A Hermitian fibre metric h can be written in local holomorphic coordinates (zi) by

h = hijdz
i ⊗ dzj

where Einstein notation is used. Hence, in local coordinates, the associated (1, 1)-form is written
as

ω =

√
−1

2
hijdz

i ∧ dzj .

Observe that

ω = −
√
−1

2
hjidz

i ∧ dzj =
√
−1

2
hjidz

j ∧ dzi = ω,

implying that ω is a real-valued form. This observation leads some authors to describe ω the
associated 2-form of g.

Remark 1.3.20. Above, we see three separate structures: the Hermitian metric g, the Hermitian
fibre metric h, and the associated (1, 1)-form ω. These structures often have different names
depending on the author. As an example to illustrate this inconsistency in nomenclature, all such
structures are - frustratingly - referred to as the Hermitian metric. Although ω is in fact a (1, 1)-
form, it is sometimes referred to in this way as a tradition. To compress notation, ωg denotes the
(1, 1)-form ω with underlying compatible metric g. Throughout this project, we sometimes refer
to ωg as the Hermitian metric, as many examples of such metrics are furnished by considering
(1, 1)-forms (see Example 1.3.25, Example 1.3.26).

This proposition is a useful characterisation of Hermitian metrics that unearths important results.

Example 1.3.21. Consider Cn with the metric h =
∑n

k=1 dz
k⊗dzk. In light of Proposition 1.3.19,

we apply the change of coordinates zi = xi +
√
−1yi. Therefore, our metric now reads

h =
n∑

k=1

(dxk ⊗ dxk + dyk ⊗ dyk)−
√
−1

n∑
k=1

(dxk ⊗ dyk − dyk ⊗ dxk)

We observe that the underlying Riemannian metric is merely the Euclidean metric on R2n. The
Euclidean metric is invariant under J (that is to say J is a linear isometry), meaning that h is
Hermitian.

Definition 1.3.22. Let (X, g) be a Hermitian manifold. The Hermitian metric g is said to be a
Kähler metric if the associated (1, 1)-form is closed

dω = 0.

A Hermitian manifold (X, g, ω) is said to be Kähler if g is a Kähler metric. A complex manifold
X is said to be Kähler if it supports a Kähler metric.

Example 1.3.23. A simple example of a Kähler manifold is Cn equipped with the flat metric
δ =

∑n
i=1 dz

i ⊗ dzi. The associated (1,1)-form is ω =
√
−1
∑n

i=1 dz
i ∧ dzi, which is obviously

closed.

Example 1.3.24. The flat metric on Cn descends to a Kähler metric on Cn/Λ, the complex n-torus
with lattice Λ ⊆ Cn, still referred to as the flat metric.

Example 1.3.25. Let Pn denote the complex projective space. We define the Fubini–Study metric
as follows: Let {Ui} denote the usual covering for Pn as defined in Example 1.1.25. Consider the
following form defined locally on Ui.

ωi :=
√
−1∂∂ log

(
n∑

ℓ=0

∣∣∣∣zℓzi
∣∣∣∣2
)

∈ Ω1,1(Ui).
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Under the coordinate chart map φi, the expression reads

ωi :=
√
−1∂∂ log

(
1 +

n∑
ℓ=0

|wk|2
)
.

To show that ω is globally defined, it suffices to prove that ωi|Ui∩Uj = ωj |Ui∩Uj . Observe,

log

(
n∑

ℓ=0

∣∣∣∣zℓzi
∣∣∣∣2
)

= log

(∣∣∣∣zjzi
∣∣∣∣ n∑
ℓ=0

∣∣∣∣zℓzj
∣∣∣∣2
)

= log

(∣∣∣∣zjzi
∣∣∣∣)+ log

(
n∑

ℓ=0

∣∣∣∣zℓzj
∣∣∣∣2
)

It therefore suffices to show that ∂∂ log(|zj/zi|) = 0. In local holomorphic coordinates (i.e., under
φi), we have

∂∂ log(zjzj) = ∂

(
n∑

k=1

zjδjk
zjzj

dzk

)
= ∂

(
1

zj
dzj
)

= 0

Hence, we have that ωi|Ui∩Uj = ωj |Ui∩Uj . Denote the global extension of this (1, 1)-form as ωFS .

That ωFS is closed and a real 2-form follows from Proposition 1.2.17, as ∂∂ = −∂∂ and ∂2 = ∂
2
= 0.

To show it is positive definite, we calculate ωFS explicitly:

√
−1∂∂ log

(
1 +

n∑
i=1

|wi|2
)

=
√
−1

n∑
i,j=1

(1 +
∑

|wi|2)δij − wiwj

(1 +
∑

|wi|2)2
dwi ∧ dwj .

It is straight forward to check that ωFS is U(n+ 1) invariant. Since U(n+ 1) acts transitively on
Pn, it suffices to check wether ωFS is positive definite at one point. At the origin, we have

ωFS =
√
−1

n∑
i,j=1

δijdz
i ∧ dzj .

The coefficients correspond to the identity matrix which is positive definite. Hence, the metric
associated with ωFS is indeed a Kähler metric.

Example 1.3.26. Recall that for a domain Ω ⊆ Cn, one may define the associated Bergman
kernel K(z, ζ). For bounded domains, K(z, z) is strictly plurisubharmonic, meaning we can define
a Hermitian metric on Ω. This metric is referred to as the Bergman metric, and is given by the
2-form

ωΩ :=
√
−1∂∂ logK(z, z).

The Bergman metric is a Kähler metric. We now compute the Bergman metric on the ball.

ωBn =
√
−1∂∂ log

(
n!

πn log(1− |z|2)n+1

)
= −(n+ 1)

√
−1∂∂ log(1− |z|2).

Computing this directly is routine. Hence, the Bergman metric on the ball gBn is given by

gBn = (n+ 1)
(1− |z|)2δij + zizj

(1− |z|2)2
dzi ⊗ dzj .

Observe that for n = 1, the Bergman metric coincides with the classical Poincaré metric on the
unit disk

gB =
2

(1− |z|2)2
dzi ⊗ dzj .

Example 1.3.27. Let (Y, h) be a Hermitian manifold, and f : X → Y be a holomorphic map.
Consider the pullback of h, denoted f∗h. If f∗h is positive definite, then it is referred to as the
pullback metric on X.
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Proposition 1.3.28. Let f : X → Y be a holomorphic map, and h denote a Hermitian metric on
Y . Then, f is a holomorphic immersion if and only if f∗h is a Hermitian metric.

This proposition furnishes an important subclass of pullback metrics. Since the inclusion map
ι : S ↪→ (Y, h) of a submanifold S is a holomorphic immersion, we have that ι∗h is a Hermitian
metric by the above. Such a metric is referred to as the induced metric. We may also define an
equivalence of geometric structures.

Definition 1.3.29. Let (X, g) and (X̃, g̃) be Hermitian manifolds. An isometry is a diffeomorphism

f :M → M̃ such that f∗g̃ = g. In this case, we say that (M, g) and (M̃, g̃) are isometric.

It may also be shown that the set of isometries on a Hermitian manifold (X, g) form a group under
composition, which we denote Iso(M, g). This group is referred to as the isometry group. We now
state more examples of Hermitian and Kähler metrics.

Example 1.3.30. The Kähler condition is preserved under holomorphic immersions. In particular,
let f : X → (Y, η, h) be a holomorphic immersion between complex manifolds. The pullback of
η by f is given by (f∗η)(u, v) = η(df(u), df(v)). Since f is holomorphic, the complex structure is
preserved and f∗η is non-degenerate as f is an immersion.

Example 1.3.31. The previous example implies that any complex submanifold of a Kähler man-
ifold is also a Kähler manifold. The submanifold inherits the metric on the ambient manifold.
Hence, all projective and Stein manifolds are Kähler, as they inherit the Fubini–Study metric and
flat metric respectively.

Example 1.3.32. Consider a Hermitian manifold X such that dimC(X) = 1. As a corollary of
Proposition 1.3.18 and Proposition 1.3.19, all complex manifolds admit a Hermitian metric h (of
the form hdz ⊗ dz where h : X → C is smooth) with associated (1, 1)-form ω. Calculating dω, we
observe,

dω =

(
∂h

∂z
dz +

∂h

∂z
dz

)
∧ dz ∧ dz = ∂h

∂z
dz ∧ dz ∧ dz − ∂h

∂z
dz ∧ dz ∧ dz = 0.

Therefore, all Riemann surfaces are Kähler.

The following theorem demonstrates that the Kähler condition is severely restricted by the under-
lying topology of the manifold.

Theorem 1.3.33 ([Mor07, p. 109]). Let k ∈ Z≥0 and X be a compact Kähler manifold. Then,
b2k+1(X) is even.

The above theorem then constructs one of the first examples of a complex manifold which admits
no Kähler metrics.

Non-Example 1.3.34. The primary Hopf surface S3 × S1 is a compact Hermitian manifold that
admits no Kähler metric. Indeed, the Künneth formula yields that b1(S3 × S1) = 1, which is not
even.

There are various classes of Hermitian metrics that relax the Kähler condition but still retain
enough structure for meaningful study.

Definition 1.3.35. Let (X, g) be a Hermitian manifold of (complex) dimension n, where g has
associated (1, 1)-form ω. We say that g is
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(i) pluriclosed if ∂∂ω = 0.
(ii) balanced if dωn−1 = 0,

where ωn−1 := ω ∧ · · · ∧ ω︸ ︷︷ ︸
n times

.

Example 1.3.36. Although the primary Hopf surface S3×S1 admits no Kähler metric, the metric
described by the (1,1)-form

ω0 :=
√
−1

δij
|z|2

dzi ∧ dzj

is a Hermitian metric which is pluriclosed. The metric associated with this form, denoted g0, is
referred to as the Boothby metric. We show that g0 is pluriclosed by direct computation, removing
the factor of

√
−1 for simplicity.

∂ω0 =
−δijzℓ

|z|4
dzi ∧ dzj ∧ dzℓ

∂∂ω0 =
−δkℓ δij |z|2 + 2δkℓ z

izj

|z|6
dzi ∧ dzj ∧ dzk ∧ dzℓ

Summing over i, j, k, ℓ and cancelling out several terms via the antisymmetry of the wedge operator,
we obtain

∂∂ω0 =
−2

|z|4
(dz1 ∧ dz1 ∧ dz2 ∧ dz2) + 2|z1|2

|z|6
(dz1 ∧ dz1 ∧ dz2 ∧ dz2) + 2|z2|2

|z2|6
(dz1 ∧ dz1 ∧ dz2 ∧ dz2)

=
2(|z1|2 + |z2|2 − |z|2)

|z|6
(dz1 ∧ dz1 ∧ dz2 ∧ dz2)

= 0.

Example 1.3.37. Let GL(3,C) denote invertible 3 × 3 matrices with entries in C. We consider
the subgroup G, defined as

G :=


1 z1 z3

0 1 z2

0 0 1

 : z1, z2, z3 ∈ C

 .

This subgroup is a complex Lie group biholomorphic to C3, where multiplication is given by

(z1, z2, z3) · (w1, w2, w3) = (z1 + w1, z2 + w2, z3 + z1w2 + z3).

An Iwasawa manifold is the left coset space G/Γ, where Γ is a discrete subgroup of G such that
G/Γ is compact. A simple example is the standard Iwasawa manifold, where matrix entries in Γ are
given by the Gaussian integers i.e., n+

√
−1m for n,m ∈ Z. It was proven by Michelsohn [Mic82]

that although the standard Iwasawa manifold admits no Kähler metrics, it does admit a balanced
metric.

Proposition 1.3.38 ([Zhe00, p. 173]). Let (X, g) be a Kähler manifold. Then in local coordinates
(z1, ..., zn), the metric g =

∑n
i,j=1 gijdz

i ⊗ dzj has the following symmetry:

∂gij
∂zk

=
∂gkj
∂zi

,
∂gij

∂zk
=
∂gik
∂zj

.

Proof. The associated (1, 1)-form of the metric g is given as ω =
√
−1
∑n

i,j=1 gijdz
i ∧ dzj . Then,

0 = dω = ∂ω + ∂ω
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=
√
−1

n∑
i,j=1

∂(gij) ∧ dz
i ∧ dzj +

√
−1

n∑
i,j=1

∂(gij) ∧ dz
i ∧ dzj

=
√
−1

n∑
i,j,k=1

∂gij
∂zk

dzk ∧ dzi ∧ dzj +
√
−1

n∑
i,j,k=1

∂gij

∂zk
dzk ∧ dzi ∧ dzj

=
√
−1

n∑
j=1

(∑
i<k

∂gij
∂zk

dzk ∧ dzi ∧ dzj +
∑
i>k

∂gij
∂zk

dzk ∧ dzi ∧ dzj
)

+
√
−1

n∑
i=1

∑
j<k

∂gij

∂zk
dzk ∧ dzi ∧ dzj +

∑
j>k

∂gij

∂zk
dzk ∧ dzi ∧ dzj


=

√
−1

n∑
i,j,k=1

(
∂gij
∂zk

−
∂gkj
∂zi

)
dzi ∧ dzk ∧ dzj +

√
−1

n∑
i,j,k=1

(
∂gij

∂zk
−
∂gik
∂zj

)
dzk ∧ dzi ∧ dzj

As the first and second terms lie in different vector bundles (Ω2,1(X) and Ω1,2(X) respectively),
our symmetries are obtained. □

1.4. Curvature of Hermitian Metrics. As a Hermitian metric is also a Hermitian fibre metric
on the holomorphic tangent bundle, we may consider its Chern connection. Although we define this
connection on T 1,0X, we may extend it to T 0,1X by conjugation (see Proposition 1.3.8 for details).
The extension of the Chern connection to TCX is still referred to as the Chern connection.

Proposition 1.4.1. Let (X, g) denote a Hermitian manifold. Then, the Chern connection in a
local coordinate frame ∂

∂zi
is given by

Rijkℓ = −
∂2gkℓ
∂zi∂zj

+ gpq
∂gkq
∂zi

∂gpℓ
∂zj

.

Proof. We compute Rijk
p. Theorem 1.3.12 yields that ∇∂k

s = ∂ks for a smooth section s of a vector
bundle E. Further, if s is holomorphic, ∇∂k

s = 0. Hence,

Rijk
p∂p = (∇∂i∇∂j

−∇∂j
∇∂i)∂k = −∇∂j

(Γp
ik∂p) = −(∂jΓ

p
ik)∂p

From Theorem 1.3.12, we have that Rijk
p = −∂j(gpq∂igkq). We now consider ∂jg

pq. Consider that

gpmgpq = δmq . Applying ∂j to both sides, we obtain the following.

∂j(g
pmgpq) = 0

(∂jg
pm)gpq + gpm(∂jgpq) = 0

Rearranging for the desired term, we then obtain,

∂jg
am = −gaqgpm(∂jgpq).

Using this, observe,

Rijk
p = gpmgnq(∂jgnm)(∂igkq)− gpq∂i∂jgkq.

Recalling that Rijkℓ = Rijk
pgpℓ, we conclude that

Rijkℓ = −
∂2gkℓ
∂zi∂zj

+ gpq
∂gkq
∂zi

∂gpℓ
∂zj

.

□
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It is an immediate consequence of the above that Rijkℓ = Rjiℓk.

Reminder 1.4.2. The Levi–Civita connection. LetM denote a smooth manifold. The torsion
T of a connection ∇ on TM , defined as the (1, 2)-tensor field T (u, v) = ∇uv −∇vu− [u, v], where
[·, ·] denotes the Lie bracket. We say that a connection is torsion-free if T vanishes identically. One
of the landmark results of Riemannian geometry is that there exists a unique connection which is
both compatible (i.e., ∇g = 0) and torsion-free on any Riemannian manifold (M, g) [Lee18]. This
connection to referred to as the Levi–Civita connection.

As we now observe, the Levi–Civita connection is ill-fitting for studying Hermitian (not necessarily
Kähler) manifolds.

Proposition 1.4.3 ([Zhe00, p. 173]). On a Hermitian manifold (X, g), the Chern connection
coincides with the Levi-Civita connection if and only if (X, g) is Kähler.

Proof. If ∇c = ∇LC , we observe that cT = 0. Computing the torsion coefficients of the Chern
connection, we have

cT k
ij = gkℓ(∂igjℓ − ∂jgiℓ)

This implies that ∂igjℓ = ∂jgiℓ, meaning that the Kähler condition is met. For the other direction,

assume that (X, g) is Kähler. Then, the symmetries of the Kähler metric as proven in Proposi-
tion 1.3.38 yield that cT = 0. Since we have that ∇cg = 0 and cT = 0, the uniqueness of the
Levi-Civita connection implies that ∇c = ∇LC . □

The above demonstrates that the Chern connection is a much more natural object than the Levi–
Civita connection in the realm of Hermitian geometry. With the Chern connection, we now con-
struct the associated notions of curvature in the Hermitian category.

Definition 1.4.4. The trace of the curvature of the Chern connection yields four Chern Ricci

curvatures, given by Ric(k) := Ric
(k)

ij
dzi ⊗ dzj , where

Ric
(1)

ij
:= gkℓRijkℓ, Ric

(2)

kℓ
:= gijRijkℓ, Ric

(3)

kℓ
:= giℓRijkℓ, Ric

(4)

iℓ
:= gkjRijkℓ.

Note that Ric
(4)

iℓ
:= gkjRijkℓ is the conjugate of Ric

(3)

kℓ
, inherited from the symmetry Rijkℓ = Rjiℓk.

Remark 1.4.5. The Chern Ricci curvatures are relatively new in the landscape of complex geom-
etry. Recent developments have focused on the first Chern Ricci curvature. Particularly, compact
non-Kähler manifolds with Ric(1) = 0, referred to as non-Kähler Calabi–Yau manifolds, have been
of keen interest. Such manifolds were systematically studied by Tosatti [Tos15] through reducing

the equation Ric(1) = 0 to fully non-linear second order elliptic partial differential equation, called
a complex Monge–Ampére equation. We shall observe the Kähler case later in this thesis.

We now show that these Chern Ricci curvatures coincide if g is Kähler.

Proposition 1.4.6. Let g be a Kähler metric. Then, the Chern curvature tensor R has the
following symmetry:

Rijkℓ = Riℓkj = Rkjiℓ = Rkℓij .
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Proof. Since we are using the Levi–Civita connection, we may leverage its symmetries to obtain
Rijkℓ = Rkℓij and Riℓkj = Rkjiℓ. Further, we obtain the following via the Bianchi identities of the
Levi–Civita connection:

Rijkℓ +Rjkiℓ +Rkijℓ = 0.

As Rkijℓ = 0, we obtain Rijkℓ = −Rjkiℓ. Using the Bianchi identities again, we obtain,

Rijkℓ = −Rjkiℓ = Rkjiℓ = Riℓkj .

□

Corollary 1.4.7. If g is Kähler, then all Chern Ricci curvatures coincide.

The novetly of Kähler and Hermitian metrics in complex geometry prompts the discussion of new
types of curvature.

Definition 1.4.8. Let (X, g) denote a Hermitian manifold, and R denote the Chern curvature
tensor of g. The holomorphic bisectional curvature of g in the direction of vectors u, v ∈ T 1,0X is
given by

HBCg(u, v) :=
1

|u|2g|v|2g

∑
i,j,k,ℓ

Rijkℓu
iujvkvℓ.

The holomorphic bisectional curvature earns its title through its relationship with the classical
sectional curvature, defined as

Secg(u, v) :=
R(u, v, v, u)

|u|2g|v|2g − ⟨u, v⟩
,

where u, v ∈ TX, R is the Riemannian curvature tensor, and ⟨·, ·⟩ is alternative notation for the
Hermitian metric g. For a Kähler metric, HBCg splits into two sectional curvature terms:

HBCg(u, v) = Secg(Reu, Imv) + Secg(Rev, Imu).

The holomorphic bisectional curvature is a rather strong curvature term. For example, the Mori
[Mor79], Siu–Yau [SY80] resolution of the Frankel conjecture demonstrates if (X, g) is a compact
Kähler manifold with a Kähler metric of HBCg > 0, thenX must be biholomorphic to n-dimensional
projective space Pn. We now introduce a weaker curvature term.

Definition 1.4.9. Let (X, g) denote a Hermitian manifold, and R denote the Chern curvature
tensor of g. The holomorphic sectional curvature of g in the direction of a vector u ∈ T 1,0X is
given by

HSCg(u) :=
1

|u|4g

∑
i,j,k,ℓ

Rijkℓu
iujukuℓ.

For Kähler metrics, the holomorphic sectional curvature also shares a relationship with the classical
sectional curvature. Indeed,

HSCg(v) = Sec(Rev, Imv).

Remark 1.4.10. The relationship between the holomorphic sectional curvature and the Ricci
curvature(s) is a subject of keen interest. The theorem of Wu–Yau [WY16] asserts that for a
compact Kähler manifold (X, g) with HSCg < 0, there exists a Kähler metric g̃ on X such that
Ricg̃ < 0. Further, there has been recent evidence [Bro23] to support a positive analogue for the
Wu–Yau theorem i.e.,

HSCg > 0 =⇒ ∃ g̃ Kähler such that Ricg̃ > 0.
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There are, however, a number of examples which demonstrate that the link between HSC and Ric
is not exact. For example, Hitchin [Hit75] demonstrated that Hirzebruch surfaces admit a certain
subclass of Kähler metrics with HSC > 0, but do not admit any Kähler metric with Ric > 0. On
the other hand, Wu–Yau [WY16] showed that for Fermat hypersurfaces of degree d ≥ n+ 2 in Pn

admit Kähler metrics with Ric < 0, but no Hermitian metrics with HSC < 0.

We now consider the curvature aspects of several Hermitian manifolds. Several we have already
observed.

Proposition 1.4.11 ([Lee24, p. 256]). A Kähler manifold (X, g) is a space of constant holomorphic
sectional curvature c if and only if

Rijkℓ =
1

2
c(gijgkℓ + gkjgiℓ).

The above proposition may immediately be leveraged for previously seen Kähler metrics.

Example 1.4.12. The Fubini–Study metric gFS on complex projective space Pn does not have
constant sectional curvature. In particular, the sectional curvatures lie between 1 and 4. However,
it does have constant positive holomorphic sectional curvature. Since Pn is homogeneous, it suffices
to calculate the holomorphic sectional curvature at a single point. Let p = [1 : 0 : · · · : 0]. In
coordinates, this corresponds to the origin. Then,

∂igkℓ =
1

2

(
− δkℓz

i

(1 + |z|2)2
− δiℓz

k

(1 + |z|2)2
+

2zkzℓzi

(1 + |z|2)3

)
∂j∂igkℓ =

−1

2
(δkℓδij + δiℓδkj).

This means that at p, we have gkℓ =
1
2δkℓ, ∂igkℓ = ∂igkℓ = 0. Further,

Rijkℓ =
1

2
(δkℓδij + δiℓδkj) = 2(gkℓgij + giℓgkj).

Applying Proposition 1.4.11 yields that HSC ≡ 4 on (Pn, gFS).

Example 1.4.13. The Euclidean metric g on Cn has constant holomorphic sectional curvature
equal to 0. This does not require the lemma and can be clearly seen by computing Rijkℓ.

Example 1.4.14. The Bergman metric gB on the ball Bn has constant holomorphic sectional
curvature. Following a similar process as in Example 1.4.12 yields that HSC ≡ −4.

The class of Hermitian metrics where HSC < 0 and HSC ≤ 0 will be of key importance towards
the end of the project. For the former condition, we refer to such metrics as having negative HSC,
while the latter we refer to as having non-positive HSC. We now provide examples of both.

Example 1.4.15. Let Ω denote a complex manifold biholomorphic to a bounded domain in Cn.
Further, we assume that for every point p ∈ Ω, there is an is a holomorphic involution φp : Ω → Ω
with p as a unique fixed point. That is, φp(p) = p and dφp = −Id for all p ∈ Ω, where φ is an
isometry. Such a manifold is referred to as a bounded symmetric domain. Endowing Ω with the
Bergman metric, we obtain HSC < 0.

Example 1.4.16. Let Bn denote the ball in Cn. As stated prior, imbuing the ball with the Bergman
metric yields a Kähler manifold of negative sectional curvature. This construction also holds for
compact quotients of the ball i.e., Bn/Γ where Γ is a discrete subgroup of the automorphism group
acting freely. Compact quotients of the ball have HSC < 0.
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Example 1.4.17. The holomorphic sectional curvature of a Hermitian metric is quasi-negative if
HSC ≤ 0 everywhere and there exists p ∈ X such that

max
ξp∈T 1,0

p X\{0}
HSCg(ξp) < 0.

An example of a Hermitian metric with quasi-negative (but not negative) HSC was recently con-
structed by Sarem [Sar23]. We consider the ball quotient X := Bn/Γ, where Bn denotes the unit
ball in Cn and Γ denotes a subgroup of Aut(Bn). Let X denote the compacitifcation of X. Choosing
Γ so that X is non-compact, we may consider the compactification locus of X i.e., X \X. Further
imposing that Γ is such that the compactification locus is biholomorphic to complex tori, X is
referred to as a toroidal compactification. The Hermitian metric then constructed on X in [Sar23]
has quasi-negative HSC on X ⊂ X.

We now introduce an important class of Kähler metrics

Definition 1.4.18. Let X be a complex manifold. A Kähler metric g on X is said to be Kähler–
Einstein if Ricg = λg for some constant λ ∈ R.

An example we have already observed is the Fubini–Study metric on Pn, which is Kähler–Einstein
with λ = n + 1. If a compact Kähler manifold admits a Kähler–Einstein metric with λ = 0, then
it is referred to as Calabi–Yau. We provide some examples of Calabi–Yau manifolds.

Example 1.4.19. Let X = Cn/Λ denote the n-dimensional complex torus for some lattice Λ ⊆ Cn.
Endowed with the flat metric, we have that Ricg = 0, and is therefore Calabi–Yau.

Example 1.4.20. A compact complex surfaceX (dimCX = 2) is said to be a K3 surface if h0,1 = 0
and the canonical bundle KX is holomorphically trivial. It was proven in [Siu83] that every K3
surface admits a Kähler metric, and is therefore Calabi–Yau.

Example 1.4.21. Originally defined by Calabi [Cal79], a hyperkähler manifold is a Riemannian
manifold (M, g) equipped with three complex structures, I, J,K, which are Kähler with respect
to the Riemannian metric g and satisfy the quaternionic relations I2 = J2 = K2 = IJK =
−1. The explicit examples of hyperkähler manifolds are rather complicated; the cotangent bundle
of projective space T ∗Pn always admits a complete hyperkähler metric [Cal79]. All hyperkähler
manifolds are Calabi–Yau (see, e.g., [Zhe00, p. 229]).
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2. The Schwarz Lemma

To set up the Schwarz lemma, we introduce its primary object of focus.

Definition 2.0.1. Let X be a complex manifold with Dolbeault operators ∂ and ∂. We refer to
the operator ∂∂ (or

√
−1∂∂) as the complex Hessian. If X supports a Hermitian metric g, we define

the complex Laplacian ∆g as the trace of the complex Hessian with respect to g:

∆gf := trg(
√
−1∂∂f) = gij∂i∂jf

where f ∈ C∞(X,C).

The complex Hessian and Laplacian behave in a familiar manner to the usual Hessian and Laplacian
in multivariable calculus.

Proposition 2.0.2 ([SW13, p. 10]). Let f be a smooth, real-valued function on a compact Her-
mitian manifold (X, g) which achieves its maximum at p ∈ X. Then at p, we have

df = 0
√
−1∂∂f ≤ 0

where for α =
√
−1aijdz

i ∧ dzj , we say that α ≤ 0 if aij is negative semi-definite.

The above proposition follows from multivariable calculus, wherein the function’s first derivative
evaluates to 0 and its maximum determines a negative semi-definite Hessian. Further, taking the
trace of the complex Hessian with respect to g yields that ∆gf ≤ 0 at the maximum point. We now
observe that ∆g is a second order elliptic operator, meaning that we have access to the maximum
principle if the manifold is compact. Hence, if ∆gf ≥ 0 on a compact manifold, then f is constant.

Given a holomorphic map f : (X, g) → (Y, h) and local holomorphic coordinates (z1, . . . , zn)

centered at a point p ∈ X, we write fαi := ∂fα

∂zi
, where f = (f1, . . . , fm). Further, we use greek

indices to denote the holomorphic coordinates on the target manifold. The energy density of f is
given by

|∂f |2 := trg(f
∗h) = gijhαβf

α
i f

β
j .

A lemma is of Schwarz-type if it provides a lower bound on the Laplacian of the energy density
solely in terms of geometric quantities such as curvature, rank, and dimension [Bro22b].

2.1. The Kobayashi–Wu Bochner Formula. We begin by elaborating on the generalised Bochner
formula proved in [Bro22c, Theorem 13.1.1].

Theorem 2.1.1 ([Bro22c, Theorem 13.1.1]). Let (E, h) → X be a Hermitian vector bundle over a
complex manifold X. Let ∇ be the Chern connection on E with curvature R. Then for any smooth
section σ ∈ Γ(E), we have

√
−1∂∂|σ|2h = 2Re⟨∇1,0∂σ, σ⟩ − ⟨R(σ), σ⟩+ |∂σ|2h + |∇1,0σ|2h,

where ⟨·, ·⟩ is alternative notation for the Hermitian fibre metric h.

Proof. Let (z1, . . . , zn) denote local holomorphic coordinates on X and {ϕi}ri=1 be a local holomor-
phic frame on E. Let σ =

∑
α σ

αϕα be a smooth section of E. We may choose σα to be smooth
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functions on X and {ϕα} to be a local holomorphic frame of E. Denoting the metric components
hαβ := h(ϕα, ϕβ)

∇i∇j(hαβσ
ασβ) = hαβ(∇i∇jσ

α)σβ + hαβ(∇jσ
α)(∇iσ

β)

+ hαβ(∇iσ
α)(∇jσ

β) + hαβσ
α(∇i∇jσ

β).

Observe that the commutation formula

∇i∇jσ
β −∇j∇iσ

β = −Rijγ
βσγ

then reduces our equation to

∇i∇j(hαβσ
ασβ) = hαβ(∇i∇jσ

α)σβ + hαβ(∇jσ
α)(∇iσ

β)

+ hαβ(∇iσ
α)(∇jσ

β) + hαβσ
α(−Rijγ

βσγ +∇j∇iσ
β).

Let i = j and sum over i. If we choose coordinates at a point x0 such that hαβ(x0) = δαβ , then we

obtain

∇i∇i|σ|
2
h = (∇i∇iσ

α)σα + (∇jσ
α)(∇iσ

α)

+ (∇iσ
α)(∇iσ

α) + σα(−Riiγ
ασγ +∇i∇iσ

α).

We note that (∇i∇iσ
α)σα = (∇i∇iσ

α)σα. We then obtain the result

∆(E,h)|σ|2h = 2Re⟨∇1,0∂σ, σ⟩ − ⟨R(σ), σ⟩+ |∂σ|2h + |∇1,0σ|2h.

□

When considering holomorphic sections of a Hermitian vector bundle, we observe that ∂σ = 0.
This yields the pivotal Bochner formula proven by Kobayashi–Wu [KW70].

Theorem 2.1.2 (Kobayashi–Wu Bochner Formula, [KW70]). Let E → X be a Hermitian vector
bundle over a compact complex manifold X with Hermitian fibre metric h. Let ∇ be the Chern
connection on E. Then, for any holomorphic section σ ∈ H0(E), we have

√
−1∂∂|σ|2h = |∇1,0σ|2h − ⟨RE(σ), σ⟩

where RE is the curvature of the connection.

In particular, we may apply the Kobayashi–Wu Bochner formula to holomorphic maps. Let f :
(X, g) → (Y, h) be a holomorphic map between Hermitian manifolds. If we consider E = (T 1,0X)∗⊗
f∗T 1,0Y , then ∂f is a holomorphic section of E. We may also define a bundle metric on E given by
H := g−1 ⊗ f∗h. Note that curvature splits additively across the tensor bundle, and the dualising
of T 1,0X contributes a negative sign. Further, it commutes with pullbacks (see, e.g., [GH94]):

R(T 1,0X)∗⊗f∗T 1,0Y = −RT 1,0X ⊗ Id + Id⊗ f∗RT 1,0Y

Hence, we obtain

∂∂|∂f |2H = ⟨∇∂f,∇∂f⟩H + ⟨(RT 1,0X ⊗ Id)(∂f), ∂f⟩H − ⟨(Id⊗ f∗RT 1,0Y ), ∂f⟩H . (1)

Tracing over Eq. (1) with respect to the source metric, we obtain the Chern–Lu identity. If it is
traced over with respect to the target metric, we call the identity Aubin–Yau.
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2.2. The Chern–Lu Schwarz Lemma. Tracing over Eq. (1) with respect to our source metric,
we obtain the following theorem proven in [Lu68].

Theorem 2.2.1 (Chern–Lu Identity, [Lu68]). Let f : (X, g) → (Y, h) be a holomorphic map
between Hermitian manifolds. Then in local holomorphic coordinates {zi} and {wα} on X and Y
respectively, we have the identity

∆g|∂f |2 =
(
gijRg

ijkℓ

)
gkqgpℓhαβf

α
p f

β
q + |∇∂f |2 −Rh

αβγδ

(
gijfαi f

β
j

)(
gpqfγp f

δ
q

)
.

The first term in this sum is controlled by assuming a lower bound on the second Chern Ricci

curvature. Indeed, suppose that Ric
(2)
g ≥ −Cg for some C > 0. Since gijRg

ijkℓ
= Ric

(2)

kℓ
, we obtain

gijRg

ijkℓ
gkqgpℓhαβf

α
p f

β
q ≥ −Cgkℓg

kqgpℓhαβf
α
p f

β
q = −Cgpqhαβf

α
p f

β
q = −C|∂f |2.

The second term is the second fundamental form of f , which is always non-negative. We consider
the holomorphic vector bundle E := Λ1,0X ⊗ f∗T 1,0Y , which we refer to as the twisted cotangent

bundle. Given Chern connections ∇̂, ∇̃ on T 1,0X and T 1,0Y respectively, we define the connection

∇ as the tensor product connection of ∇̂∗ (the dual connection of ∇̂) and f∗∇̃ (the pullback

connection of ∇̃) on E. Computing this expression in a local coordinate frame, we have that

(∇k∂f)
α
ℓ = fαkℓ + Γα

γρf
γ
k f

ρ
ℓ − Γm

kℓf
α
m.

The last term however is rather difficult to observe. Choose coordinates on M and N such that
gij = δij , hαβ = δαβ , and fαi = λiδ

α
i , where λ1 ≥ λ2 ≥ · · ·λr ≥ λr+1 ≥ 0, where r is the rank of

∂f = (fαi ). This is the principle value decomposition of a matrix. Then, we obtain

gkℓgijRh
γδαβ

fαi f
β
j f

γ
k f

δ
ℓ = δℓkδ

j
iR

h
γδαβ

λiδ
α
i λjδ

β
j λkδ

γ
kλℓδ

δ
ℓ =

∑
α,γ

Rh
γγααλ

2
γλ

2
α.

We narrow our focus to the case where f : (C, g) → (X,h) is a holomorphic curve (or more generally,

if f has rank one). In local coordinates, ∂f = (fα1 ) :=
(
∂f1

∂z , . . . ,
∂fn

∂z

)
and is a row vector at each

point. Computing the last term with respect to this map yields

−Rh
αβγδ

(
gijfαi f

β
j

)(
gpqfγp f

δ
q

)
= −Rh

αβγδ

(
g11fα1 f

β
1

)(
g11fγ1 f

δ
1

)
= −g−1 ⊗HSCh(∂f),

and is therefore controlled by the holomorphic sectional curvature. This immediately yields the
following corollary.

Corollary 2.2.2. Let (X, g) be a Hermitian manifold. If HSCg ≤ 0, then X has no rational curves.

Proof. Let f : (P1, g) → (X,h) be a holomorphic map, where g is the Fubini–Study metric. The
Fubini–Study metric is Kähler with Ricg = 2g. Since HSCh ≤ 0, the Chern–Lu calculation yields

∆g|∂f |2 ≥ 2g11g
11g11fγ1 f

δ
1hγδ = 2g11g11fγ1 f

δ
1hγδ = 2|∂f |2.

Since P1 is compact, we may integrate over both sides and apply the divergence theorem to yield
that any holomorphic map f : P1 → X is constant i.e., there are no rational curves on X. □

Remark 2.2.3. The above corollary does not require any assumptions on the completeness of X.
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This in particular implies that there are no rational curves on a torus. For holomorphic maps of
higher rank, further work is required to establish suitable bounds. In the Kähler setting, Royden
[Roy80] demonstrated that a sign on the holomorphic sectional curvature of h forces control of the
last term. This amounts to a linear algebraic result, referred to as Royden’s trick in the literature
(see e.g., [Bro22a]).

Theorem 2.2.4 (Royden’s Trick, [Roy80]). Let ξ1, . . . , ξn be orthogonal tangent vectors on a
Hermitian manifold (X, g). Let S(ξ, η, ζ, ω) be a symmetric bi-Hermitian form, i.e.,

S(ξ, η, ζ, ω) = S(ζ, η, ξ, ω), S(η, ξ, ω, ζ) = S(ξ, η, ζ, ω).

If S(ξ, ξ, ξ, ξ) ≤ κ∥ξ∥4, then∑
α,β

S(ξα, ξα, ξα, ξα) ≤ κ
n+ 1

2n

(∑
α

∥ξα∥2
)2

Proof. Consider A ∈ Zn
4 , denoted A = (ε1, . . . , εn) where ε4α = 1 for each α. We have that

εα ∈ {1,−1,
√
−1,−

√
−1}. Set ξA :=

∑
α εαξα. Then ∥ξA∥2 =

∑
α ∥ξα∥2, and so

S(ξA, ξA, ξA, ξA) ≤ κ∥ξA∥2 = κ

(∑
α

∥ξα∥2
)2

.

Summing both sides over A ∈ Zn
4 , we obtain

κ

(∑
α

∥ξα∥2
)2

≥ 1

4n

∑
A∈Zn

4

S(ξA, ξA, ξA, ξA)

=
1

4n

n∑
α,β,γ,δ=1

εαεβεγεδS(ξα, ξβ, ξγ , ξδ)

=
∑
α

S(ξα, ξα, ξα, ξα) +
∑
α ̸=γ

(S(ξα, ξα, ξγ , ξγ) + S(ξα, ξγ , ξγ , ξα)).

By the symmetry of S, we have∑
α

S(ξα, ξα, ξα, ξα) + 2
∑
α ̸=γ

S(ξα, ξα, ξγ , ξγ) ≤ κ

(∑
α

∥ξα∥2
)2

.

Adding
∑

α S(ξα, ξα, ξα, ξα) to both sides and applying the assumption that S(ξ, ξ, ξ, ξ) ≤ κ∥ξ∥4,
we then obtain

2
∑
α,γ

S(ξα, ξα, ξγ , ξγ) ≤ κ

(∑
α

∥ξα∥2
)2

+ κ
∑
α

∥ξα∥4.

Now suppose that κ ≤ 0. Since (
∑

α ∥ξα∥2)2 ≤ n
∑

α ∥ξα∥4 by the Cauchy-Schwarz inequality, we
see that

κ

(∑
α

∥ξα∥2
)2

≥ κn
∑
α

∥ξα∥4.

Hence,

2
∑
α,γ

S(ξα, ξα, ξγ , ξγ) ≤ κ

(∑
α

∥ξα∥2
)2

+
κ

n

(∑
α

∥ξα∥2
)2
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∑
α,γ

S(ξα, ξα, ξγ , ξγ) ≤ κ
n+ 1

2n

(∑
α

∥ξα∥2
)2

as desired. □

Applying this trick to our mysterious term (in the simpler coordinates), we obtain a bound in
terms of the holomorphic sectional curvature. For a general Hermitian metric, however, Royden’s

argument cannot be used. To summarise, we see that if g is a Hermitian metric with Ric
(2)
g ≥ Cg

and h is a Kähler metric with HSCh ≤ −κ, then

∆g|∂f |2 = |∇∂f |2 + C|∂f |2 + κ
r + 1

r
|∂f |4 ≥ C|∂f |2 + κ

r + 1

r
|∂f |4.

Hence, we obtain Royden’s Schwarz lemma.

Theorem 2.2.5 (Royden Schwarz lemma, [Roy80]). Let f : (X, g) → (Y, h) be a holomorphic map

from a Hermitian manifold to a Kähler manifold. Suppose Ric
(2)
g ≥ Cg and HSCh ≤ −Λ0 < 0 for

constants C,Λ0. Then

∆g|∂f |2 ≥ C|∂f |2 + r + 1

r
Λ0|∂f |4

where r = rank(∂f).

So far, suitable curvature controls in the non-Kähler category are out of reach. This prompted the
consideration of the real bisectional curvature in [YZ19].

Definition 2.2.6. The real bisectional curvature of a Hermitian metric g is defined by

RBCg(ξ) :=
1

|ξ|2g

∑
i,j,k,ℓ

Rijkℓξ
ijξkℓ,

where ξ is a non-negative Hermitian (1,1)-tensor.

A sign on the real bisectional curvature, RBCg < 0 for instance, forces that same sign on the
holomorphic sectional curvature [YZ19]. If our metric is Kähler, then the converse also holds.
When considering this curvature term, we obtain a refined version of the Chern–Lu inequality for
Hermitian metrics.

Theorem 2.2.7 (Yang–Zheng Schwarz lemma, [YZ19, Theorem 4.3]). Let f : (X, g) → (Y, h) be

a holomorphic map between Hermitian manifolds. Assume Ric
(2)
g ≥ C1g + C2f

∗h for constants
C1, C2. Assume that RBCh ≤ −κ ≤ 0 for some constant κ. Then,

∆g|∂f |2 ≥ C1|∂f |2 +
(C2 + κ)

r
|∂f |4 + |∇∂f |2

where r denotes the rank of ∂f .

Proof. By Theorem 2.2.1, we have the following identity:

∆g|∂f |2 =
(
gijRg

ijkℓ

)
gkqgpℓhαβf

α
p f

β
q + |∇∂f |2 −Rh

αβγδ

(
gijfαi f

β
j

)(
gpqfγp f

δ
q

)
.

Observe gijRg

ijkℓ
= Ric

(2)

kℓ
, the second Chern Ricci curvature of g. We briefly adopt the notation

Ricg
kℓ

to denote the kℓ-component of Ric
(2)
g . From the assumptions on the curvature, we have

Ricg
kℓ
gkqgpℓhαβf

α
p f

β
q ≥ C1g

pqhαβf
α
p f

β
q + C2g

kqgpℓhαβhγδf
α
p f

β
q f

γ
k f

δ
ℓ . (2)
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The first term on the right-hand side of (2) is clearly C1trg(f
∗h). For the second term, choose

coordinates such that gij = δij , hαβ = δαβ and fαi = λiδ
α
i , where λ1 ≥ λ2 ≥ · · ·λr ≥ λr+1 ≥ 0,

where r is the rank of ∂f = (fαi ). This is the principle value decomposition of a matrix. In these
coordinates, we see that

gkqgpℓhαβhγδf
α
p f

β
q f

γ
k f

δ
ℓ = δqkδ

ℓ
pδ

β
αδ

δ
γλpδ

α
p λqδ

β
q λkδ

γ
kλℓδ

δ
ℓ =

∑
α

λ4α.

Then
(∑

α λ
2
α

)2 ≤ r
∑

α λ
4
α by the Cauchy–Schwarz inequality. Indeed,(

r∑
i=1

λ2i · 1

)2

≤ r

(
r∑

i=1

λ4i

)
Hence, we obtain

Ricg
kℓ
gkqgpℓhαβf

α
p f

β
q ≥ C1|∂f |2 +

C2

r
|∂f |4.

These coordinates will also be useful for analyzing the remaining curvature term. Indeed, in these
coordinates, we see that

gkℓgijRh
γδαβ

fαi f
β
j f

γ
k f

δ
ℓ = δℓkδ

j
iR

h
γδαβ

λiδ
α
i λjδ

β
j λkδ

γ
kλℓδ

δ
ℓ = Rh

γγααλ
2
γλ

2
α.

Since RBCh ≤ −κ ≤ 0, we have

Rh
ααγγλ

2
αλ

2
γ ≤ −κ

∑
α

λ4α ≤ −κ
r

(∑
α

λ2α

)2

= −κ
r
|∂f |4.

We therefore have that gkℓgijRh
γδαβ

fαi f
β
j f

γ
k f

δ
ℓ ≤ −κ

r |∂f |
4. Combining the above inequalities, we

obtain

∆g|∂f |2 ≥ C1|∂f |2 +
(C2 + κ)

r
|∂f |4 + |∇∂f |2.

□

One particular avenue exploited by Broder–Pulemotov [BP23] is the Schwarz lemma applied to
Hermitian metrics of vanishing second Chern Ricci curvature. Using the Yang–Zheng schwarz
lemma, they obtain the following theorem.

Theorem 2.2.8 ([BP23, Theorem 1.1]). Let (X, g) be a compact Hermitian manifold with RBCg ≤
0. If the equality Ric

(2)
h = 0 holds for some Hermitian metric h on X, then h has the same Chern

connection as g. If there is a point where RBCh < 0, then there are no metrics on X with vanishing
second Chern Ricci curvature.

Proof. Let f : (X, g) → (X,h) be a holomorphic map. In coordinates, we may write |∇∂f |2 as

(∇k∂f)
α
ℓ = fαkℓ + Γα

γρ(h)f
γ
k f

ρ
ℓ − Γm

kℓ(g)f
α
m,

where Γm
kℓ(g),Γ

α
γρ(h) denote the Christoffel symbols (of the Chern connection) of g and h respec-

tively. Since Ric
(2)
h = 0 and RBCh ≤ 0, the Chern–Lu inequality yields

∆h|∂f |2 ≥ |∇∂f |2.
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Since X is compact, the maximum principle implies that |∂f |2 is constant, and therefore ∇∂f = 0.
Let f = id. Hence,

0 = (∇k∂f)
α
ℓ = fαkℓ + Γα

γρ(h)δ
γ
kδ

ρ
ℓ − Γm

kℓ(g)δ
α
m = Γm

kℓ(h)− Γm
kℓ(g),

which implies g and h have the same Chern connection. If RBCh < 0 at same point, we arrive
at the same contradiction, meaning that there are no second Chern Ricci flat metrics on compact
manifolds with RBCh < 0 at a point. □

Corollary 2.2.9 ([BP23, Corollary 1.2]). Let (X,h) be a compact Kähler manifold with HSCh ≤ 0.

Then every Hermitian metric g on X satisfying Ric
(2)
g = 0 is Kähler. If such a metric exists, the

manifold X is Calabi–Yau.

Proof. Let f : (X, g) → (X,h) be a holomorphic map. Royden’s trick then implies that RBCh ≤ 0.
Hence, we may apply Theorem 2.2.8 to obtain the equality of Chern connections in the HSCh ≤ 0
case, and non-existence if HSCh < 0. Therefore, since the Chern connection of h has vanishing
torsion (as it is Kähler), the Chern connection of g must also have vanishing torsion. This implies
that g is Kähler. Further, as Ricg = 0, X is Calabi–Yau. □

If our metric is Kähler, there is only one Ricci curvature. Hence, the class of Hermitian metrics
with vanishing second Chern Ricci curvature manifests itself as Calabi–Yau in the Kähler case.

Corollary 2.2.10. Calabi–Yau manifolds admit no Kähler metrics with HSC < 0.

Proof. Let (X, g) denote a Calabi–Yau manifold. Assume there exists a Kähler metric h on X with
HSCh < 0. Then, we have that RBCh ≤ −κ < 0 where κ > 0. Let Id : (X, g) → (X,h) denote the
identity map. The Chern–Lu inequality then gives us

∆g|∂Id|2 ≥
κ

r
|∂Id|4 > 0.

Integrating both sides then yields a contradiction. □

A further development to Chern–Lu Schwarz lemma was considered by Broder–Stanfield [BS23],
where they turned their attention to the Hessian |∇∂f |2. As with matrices, the Hessian may be bro-
ken into its symmetric and skew-symmetric parts, denoted Sym(∇∂f) and Skew(∇∂f) respectively.
This resulted in the discovery of the following curvature.

Definition 2.2.11 (Broder–Stanfield, [BS23]). The tempered real bisectional curvature of a Her-
mitian metric g is defined by

RBCτ
g(ξ) :=

1

|ξ|2g

∑
i,j,k,ℓ

(
Rijkℓξ

ijξkℓ − 1

4

∑
p,q

T p
ikT

q
jℓξ

ijξkℓgpq

)
where ξ is a non-negative Hermitian (1, 1)-tensor, and T is the torsion of the Chern connection.

This novel curvature term provides control over the holomorphic sectional curvature of a non-
trivial class of Hermitian (non-Kähler) metrics. In particular, if the metric is pluriclosed, negative
holomorphic sectional curvature implies that the tempered real bisectional curvature is negative.

Proposition 2.2.12. Let (X, g) be a pluriclosed manifold. Then HSCg and RBCτ
g are comparable

in the sense that they always have the same sign.
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Proof. We note that the pluriclosed condition is equivalent to

Rijkℓ −Rkjiℓ −Riℓkj +Rkℓij =
∑
p,q

T p
ikT

q
jℓhpq. (3)

This is a consequence of the first Bianchi identity for curvature forms (see e.g., [RZ22, p. 3]).
Observe that from Eq. (3), we have∑

i,j,k,ℓ,p,q

T p
ikT

q
jℓξ

ijξkℓhpq =
∑
i,j,k,ℓ

(Rijkℓ −Rkjiℓ −Riℓkj +Rkℓij)ξ
ijξkℓ

=
∑
i,j,k,ℓ

(Rijkℓ −Riℓkj)ξ
ijξkℓ +

∑
i,j,k,ℓ

(Rkℓij −Rkjiℓ)ξ
ijξkℓ

=
∑
i,j,k,ℓ

(Rijkℓ −Riℓkj)ξ
ijξkℓ +

∑
i,j,k,ℓ

(Rijkℓ −Riℓkj)ξ
kℓξij

= 2
∑
i,j,k,ℓ

(Rijkℓ −Riℓkj)ξ
ijξkℓ

We compute RBCτ
g(ξ) for when g is pluriclosed.

RBCτ
g(ξ) =

1

|ξ|2g

∑
i,j,k,ℓ

(
Rijkℓξ

ijξkℓ − 1

4

∑
p,q

T p
ikT

q
jℓξ

ijξkℓgpq

)

=
1

|ξ|2g

∑
i,j,k,ℓ

(
Rijkℓ −

1

2
Rijkℓ +

1

2
Riℓkj

)
ξijξkℓ

=
1

2|ξ|2g

∑
i,j,k,ℓ

(
Rijkℓ +Riℓkj

)
ξijξkℓ.

This curvature term may be considered by the altered holomorphic sectional curvature, defined in
[BT24] as

H̃SCg(ξ) :=
1

|ξ|2g

∑
i,j,k,ℓ

(Rijkℓ +Riℓkj)ξ
ijξkℓ,

where ξ is a non-negative Hermitian (1,1)-tensor. Hence, RBCτ
g = 1

2H̃SCg. This curvature term is
also considered implicitly in [YZ19], where it is shown to have the same sign as the holomorphic
sectional curvature (see, e.g., [YZ19, p. 5]). This demonstrates that RBCτ

g and HSCg have the
same sign. □

This yields the following extension of the Royden Schwarz lemma.

Theorem 2.2.13 (Broder–Stanfield Schwarz lemma, [BS23, Corollary 3.1]). Let f : (X, g) → (Y, h)
be a holomorphic map of rank r from a compact Kähler manifold to a pluriclosed manifold. Suppose
there are constants C1, C2 ∈ R and Λ0 ∈ R≥0 such that Ricg ≥ C1g+C2f

∗h, and HSCg ≤ −Λ0 ≤ 0.
Then,

∆g|∂f |2 ≥ C1|∂f |2 +
(
Λ0 + C2

r

)
|∂f |4

Proof. We begin with the identity afforded to us by Theorem 2.2.1:

∆g|∂f |2 = Ricg
kℓ
gkqgpℓhαβf

α
p f

β
q + |∇∂f |2 −Rh

αβγδ

(
gijfαi f

β
j

)(
gpqfγp f

δ
q

)
.
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We consider breaking apart the hessian |∇∂f |2 into its symmetric and skew-symmetric parts. The
skew-symmetric part of |∇∂f |2, written as Skew(∇∂f), is given in a local frame by

Skew(∇∂f)αij =
1

2
((∇i∂f)

α
j − (∇j∂f)

α
i ),

which follows from the decomposition of a matrix into its symmetric and skew symmetric parts.
Computing this explicitly, we obtain

Skew(∇∂f)αij =
1

2
((∇i∂f)

α
j − (∇j∂f)

α
i )

=
1

2
(fγi Γ

α
γρf

ρ
j − Γp

ijf
α
p − (fγj Γ

α
γρf

ρ
i − Γp

jif
α
p ))

=
1

2
(fγi f

ρ
kT

α
γρ + T ρ

jif
α
p )

=
1

2
(fγi f

ρ
kT

α
γρ − T ρ

ijf
α
p ).

Since g is Kähler, we have that its torsion vanishes. Hence, Skew(∇∂f)αij = 1
2(f

γ
i f

ρ
kT

α
γρ). Further,

the skew-symmetric and symmetric parts of |∇∂f |2 are orthogonal, meaning that

|∇∂f |2 = 1

4

∑
i,j,α

|fγi f
ρ
j T

α
γρ|2 + |Sym(∇∂f)|2,

where Sym(∇∂f) denotes the symmetric part of ∇∂f . It is a straightforward tensor calculation to
see that

|fγi f
ρ
j T

α
γρ|2 = T ρ

αγT
σ
βδhρσ(g

ijfαi f
β
j )(g

pqfγp f
δ
q ).

Combining the above results, we obtain

∆g|∂f |2 = |Sym(∇∂f)|2 +Ricg
kℓ
gkqgpℓhαβf

α
p f

β
q −

(
Rh

αβγδ
− 1

4
T ρ
αγT

σ
βδhρσ

)
(gijfαi f

β
j )(g

pqfγp f
δ
q ).

Since |Sym(∇∂f)|2 ≥ 0, we may disregard it. Using similar reasoning as in Theorem 2.2.7, the
bounds on the Ricci curvature yield

Ricg
kℓ
gkqgpℓhαβf

α
p f

β
q ≥ C1|∂f |2 +

C2

r
|∂f |4.

Since h is pluriclosed and HSCh ≤ 0, then RBCτ
h ≤ −Λ0 ≤ 0. These bounds on RBCτ

h then yield(
Rh

αβγδ
− 1

4
T ρ
αγT

σ
βδhρσ

)
(gijfαi f

β
j )(g

pqfγp f
δ
q ) ≤

−Λ0

r
|∂f |4.

Combining all above inequalities then yields our result. □

An immediate corollary of the Broder–Stanfield Schwarz lemma is the following.

Corollary 2.2.14. Every holomorphic map from a compact Kähler manifold with Ricg ≥ 0 to a
pluriclosed manifold with HSCh ≤ −Λ0 < 0 is constant.

2.3. The Aubin–Yau Schwarz Lemma. So far, all Schwarz lemmas have come from tracing over
the Hessian ∂∂|∂f |2 with respect to the source metric. If we further assume that f is biholomorphic
onto its image, we may trace over this Hessian with respect to the target metric. Such estimates
were first considered in [Aub78], [Yau78], and are therefore referred to as Aubin–Yau Schwarz
lemmas.

47



Theorem 2.3.1 (Aubin–Yau Identity, [Aub78],[Yau78]). Let f : (M, g) → (N,h) be a holomorphic
map between Hermitian manifolds which is biholomorphic onto its image. Then in local holomorphic
coordinates {zi} and {wα} on M and N respectively, we have the identity

∆h|∂f |2 = |∇∂f |2 −
(
hγδRh

γδαβ

)
gijfαi f

β
j + hγδgiqgpjRg

kℓpq
hαβf

α
i f

β
j (f

−1)kγ(f
−1)ℓδ.

The identity, first considered in [Aub78], [Yau78], may be analysed in a similar fashion to the
Chern–Lu identity. The first term is easily controllable, while the second term is controlled by

Ric
(2)
h . Again, we are faced with a foreign curvature term in the third summand. In the Kähler

case, Yau observed that it may be controlled by the holomorphic bisectional curvature.

Theorem 2.3.2 (Aubin–Yau Identity, [Aub78],[Yau78]). Let f : (M, g) → (N,h) be a holomorphic

map, which is biholomorphic onto its image. Assume that HBCg ≥ −κ and Ric
(2)
h ≤ C1h +

C2(f
−1)∗g for constants κ,C1, C2. Then,

∆h|∂f |2 ≥ |∇∂f |2 + C1|∂f |2 − nC2 − κ

where n = dimC(M).

The curvature conditions for Hermitian metrics are not well understood prompting, Broder [Bro22b]
to consider a novel curvature term:

Definition 2.3.3. The Schwarz bisectional curvature of a Hermitian metric g is defined by

SBCg(ξ) :=
∑
i,j,k,ℓ

Rijkℓξ
ij(ξ−1)kℓ,

where ξ is a positive-definite Hermitian (1,1)-tensor.

The Schwarz bisectional curvature provides a Hermitian analogue for the Aubin–Yau Schwarz
lemma. Although little is known about the Schwarz bisectional curvature, it is dominated by the
holomorphic bisectional curvature. Hence, all Hermitian symmetric spaces have non-negative SBC.
Adopting this curvature term then yields a Hermitian Aubin–Yau inequality.

Theorem 2.3.4 (Broder Schwarz lemma, [Bro22b, Theorem 1.3]). Let f : (X, g) → (Y, h) be a
holomorphic map between Hermitian manifolds, which is biholomorphic onto its image. Assume

SBCg ≥ −κ and Ric
(2)
h ≤ −C1h+ C2(f

−1)∗g for some constants κ,C1, C2, with κ ≥ 0. Then,

∆h|∂f |2 ≥ |∇∂f |2 + C1|∂f |2 − nC2 − κ

where n = dimC(M).

Proof. By Theorem 2.3.1, we have

∆h|∂f |2 = |∇∂f |2 −
(
hγδRh

γδαβ

)
gijfαi f

β
j + hγδgiqgpjRg

kℓpq
hαβf

α
i f

β
j (f

−1)kγ(f
−1)ℓδ.

We consider the second term, recalling that hγδRh
γδαβ

= Ric
(2)

αβ
. By our curvature assumptions, we

have that

−gijRic(2)
αβ
fαi f

β
j ≥ C1g

ijhαβf
α
i f

β
j − C2gpq(f

−1)pα(f
−1)qβg

ijfαi f
β
j = C1|∂f |2 − C2n
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We now analyse the last term. Choose coordinates such that gij = δij , hαβ = δαβ and fαi = λiδ
α
i ,

where λ1 ≥ λ2 ≥ · · ·λr ≥ λr+1 ≥ 0, where r is the rank of ∂f = (fαi ). Then,

δγδ δ
i
qδ

p
jR

g

kℓpq
δαβλiδ

α
i λjδ

b
jλ

−1
γ δkγλ

−1
δ δℓδ =

∑
i,k

Rkkiiλ
2
iλ

−2
k .

By the curvature assumption SBCg ≥ −κ, we have that Rkkiiλ
2
iλ

−2
k ≥ −κ. Combining all results

above gives the inequality

∆h|∂f |2 ≥ |∇∂f |2 + C1|∂f |2 − C2n− κ.

□

Corollary 2.3.5 ([BP23, Theorem 1.5]). Let (X, g) be a compact Hermitian manifold with SBCg ≥
0. If Ric

(2)
h = 0 for some Hermitian metric h on X, then h has the same Chern connection as g.

If there is a point where SBCg > 0, then there are no metrics on X with vanishing second Chern
Ricci curvature.

Proof. Let f : (X, g) → (X,h) denote a holomorphic map which is biholomorphic onto its image.
We first assume that SBCg ≥ 0. The Aubin–Yau inequality then yields

∆h|∂f |2 ≥ |∇∂f |2.
Since X is compact, applying the maximum principle then obtains |∇∂f |2 = 0. Setting f = id
then implies that they have the same Chern connections. Moreover, if SBCg > 0 at a point, we get
a contradiction similar to that of Theorem 2.2.8. □

Corollary 2.3.6 ([Bro22b, Corollary 4.2]). Let X be a compact Hermitian manifold supporting

Hermitian metrics g and h. Assume SBCg ≥ −κ and Ric
(2)
h ≤ −C1h+C2g for constants κ,C1, C2,

with κ ≥ 0 and C1 > 0. If κ ≤ −C2, then the automorphism group Aut(X) is trivial.

Proof. We apply the Aubin–Yau inequality to a biholomorphic map f : (X, g) → (X,h). By the
assumptions of the corollary, we have that

∆h|∂f |2 ≥ C1|∂f |2 + C2(n− 1).

We note that the right hand side of the inequality is always non-negative, since n ≥ 1. Applying
the maximum principle then yields a contradiction. Thus, Aut(X) is trivial. □
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