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Riemann Mapping Theorem

Theorem. A simply connected domain Ω ( C is biholomorphic to the unit disk
D := {z ∈ C : |z| < 1}.
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D

A domain is always understood to mean a connected open set in Cn for some n ∈ N.



The Birth of Several Complex Variables

Theorem. (Poincaré). The ball B2 := {|z|2 + |w|2 < 1} is not biholomorphic to
the bidisk D2 := {|z| < 1, |w| < 1}.
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Declare a bounded domain Ω ⊆ Cn is pseudoconvex if for all p ∈ ∂Ω, there is a smooth
function ϕ defined in a neighborhood U ⊂ Cn of p such that the complex Hessian1

√
−1∂∂̄ϕ =

(
∂2ϕ
∂zi∂zj

)
is positive semi-definite.

Ω ⊆ Cn
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ϕ < 0

If
√
−1∂∂̄ϕ is positive definite, we say that Ω is strongly pseudoconvex.

1The complex Hessian is the smallest refinement on the familiar Hessian such that it remains
invariant under a holomorphic change of coordinates.



Pseudoconvexity and Strong Pseudoconvexity is preserved under biholomorphism (if
the boundaries are C∞–smooth).

The bidisk D2 is pseudoconvex while the ball B2 is strongly pseudoconvex.
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This discrepancy has an important consequence in terms of the behavior of disk
fibrations:

A surjective holomorphic submersion p : X→ D is said to be a disk fibration if every
fiber Xt := p−1(t), for t ∈ D, is biholomorphic to a disk.

D ⊆ C

p
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The projection onto one of the factors defines a disk fibration structure on both D2 and
B2.



For the bidisk D2, the disk fibration p : D2 → D is holomorphically trivial.

We say that a disk fibration p : X→ S is locally (holomorphically) trivial if for each
point s ∈ S, there is an open neighborhood U 3 s such that

p−1(U) ' U× D.

Of course, if X = D2, for any point s ∈ D, we can take U = D.



On the other hand, the disk fibration p : B2 → D cannot be holomorphically trivial:

An old theorem of Royden tells us that a disk fibration is locally holomorphically trivial
if and only if it is holomorphically trivial.

Hence, if p : B2 → D is locally trivial, then B2 would be biholomorphic to D2.

The bidisk D2 and the ball B2, therefore, occupy two opposing ends from the
perspective of moduli and deformation theory.



Understanding the behavior of complex manifolds in families can be difficult, and we
would like to have a robust mechanism for measuring the existence or non-existence of
holomorphic variation in the fibers.

Question. Can the behavior of the disk fibrations p : X → D be detected by
looking at the curvature of metrics which reside on X?



A Riemannian metric g on smooth manifold M is a positive definite quadratic
form gp : TpM × TpM → R on each of the tangent spaces TpM such that the
map p 7→ gp is smooth.

TpM

ϑ

gp : TpM × TpM → R

M

If (x1, ..., xn) are local coordinates near p ∈ M, we write g =
∑

i,j gij dxi ⊗ dxj for the metric in these coordinates, where

gij := g
(

∂
∂xi

, ∂
∂xj

)
are the components of the metric in these coordinates.



The Riemannian metric permits us to compute the lengths of tangent vectors.

Given a smooth curve γ : [0, 1] → M, by integrating the norms of the tangent
vectors γ̇(t), we can compute its length

Lengthg(γ) :=

∫ 1

0
|γ̇(t)|g(t)dt =

∫ 1

0

√
g(γ̇(t), γ̇(t))dt.

This in turn gives us a distance function

distg : M ×M → R

on M given by declaring the distance between two points p, q ∈ M to be the infimum of
the lengths of curves γ with γ(0) = p and γ(1) = q.

We will say that a Riemannian metric is complete if the distance function distg is
Cauchy complete.



The curves which (locally) realize the shortest distance between points are called
geodesics.

Define the exponential map

expp : TpM → M, TpM 3 v 7→ γ(1) ∈ M,

where γ(1) denotes the endpoint of the unique geodesic with γ(0) = p and
γ̇(0) = v.

TpMvp

M

γ

expp : TpM → M, expp(v) := γ(1)

γ(0) = p, γ̇(0) = v



The Riemannian curvature tensor R = Rikj` measures the failure of the exponential
map to be an isometry:

gij = δij −
1
3
Rikj`xkx` + O(|x|3)

1− ε2
2 Secg

TpS2

S2

The Riemannian curvature tensor is determined by the sectional curvature Secg : Gr2(TM) → R,

Secg(u, v) := R(u, v, v, u)/|u|2|v|2, and we thus use the terms interchangably.



Examples:

– The sphere Sn has a metric of positive sectional curvature.

– (Wilking). There is a metric of positive sectional curvature almost everywhere on
S2 × S2.

– The torus has a metric of vanishing curvature.

– The ball Bn ⊂ Cn has a metric of negative sectional curvature.



Riemannian manifolds with negative sectional curvature:

Theorem. (Cartan–Hadamard). A complete Riemannianmanifold (M, g) with
Secg ≤ 0 has universal cover diffeomorphic to Rn.

In particular, the homotopy-type of M ∈ (Sec ≤ 0) is localized in the fundamental
group π1(M).

Reminder: A Riemannian manifold (M, g) is said to be complete if the distance function distg : M × M → R (given by infimum of
lengths of curves) is Cauchy complete.



Riemannian manifolds with negative sectional curvature:

Theorem. (Preissman). Let (M, g) be a compact Riemannian manifold with
Secg < 0. Then any abelian subgroup of the fundamental group π1(M) is cyclic.

In particular, compact product manifolds cannot admit metrics with Secg < 0, since the
fundamental group would then contain Z⊕ Z as a subgroup.



Without compactness, negative sectional curvature is not obstructed on products:

Theorem. (Anderson). Let f : E → B be a smooth vector bundle over a com-
pact Riemannian manifold (B, gB) with SecgB < 0. Then E admits a complete
Riemannian metric gE with

−a ≤ SecgE ≤ −1.

The constant a ≥ 1 depends only on the geometry ofB and the topology of f : E → B.



Complex Structures

An almost complex structure J on a smooth manifold M is an endomorphism

J : TX → TX, J2 = −id.
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M
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An Almost Complex Structure on S2.

Identify S2 ⊂ R3 with the space of unit imaginary quaternions Im(H3) ' R3.

For each point p ∈ S2, we get a map Jp : TpS2 → TpS2 satisfying J2p = −idTpS2 , given by

Jp(v) := p× v.

p
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In general, an almost complex structure J ∈ End(TX) is not sufficient to yield local
holomorphic coordinates.

There is an obvious obstruction: Suppose X is a complex manifold with holomorphic
coordinates (z1, ..., zn) centered at a point p ∈ X.

X

p
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The tangent space to X at the point p is the complex vector space:

TpX = spanC

{
∂

∂z1
, ...,

∂

∂zn

}
.



Let M be a smooth manifold with almost complex structure J.

The condition J2 = −id gives an eigenspace splitting

TC
p M ' T1,0

p M ⊕ T0,1
p M,

corresponding to the eigenvalues
√
−1 and −

√
−1, respectively.

If (x1, ..., x2n) are smooth coordinates onM, then T1,0
p M is spanned by

∂

∂zi
:=

∂

∂xi
−
√
−1J

∂

∂xi
,

and T0,1
p M is spanned by

∂

∂zi
:=

∂

∂xi
+
√
−1J

∂

∂xi
.

Hence, if an almost complex structure J gives rise to a system of local holomorphic
coordinates, we need to be able to find a complex manifold X such that the tangent
bundle of X is prescrisely T1,0M.



We have seen this before in the context of vector fields and integral curves:

Rn

v ∈ H0 (TRn)

vp ∈ TpRn



We have seen this before in the context of vector fields and integral curves:

Rn

v ∈ H0 (TRn)

γ : (0, 1)→ Rn γ̇ = d
dt γ = v



The integrability condition on the complex structure is merely a higher-dimensional
version of this:

Ap ⊆ TpM



The integrability condition on the complex structure is merely a higher-dimensional
version of this:

Ap ⊆ TpM

M



The Frobenius theorem tells us that T1,0M is an integrable subbundle if and only if it is
closed under Lie bracket:

[u, v] ⊆ T1,0M, ∀u, v ∈ T1,0M.

This manifests as the vanishing of the Nijenhuis tensor:

NJ(u0, v0) := [u0, v0] + J([Ju0, v0] + [u0, Jv0])− [Ju0, Jv0].

Theorem. (Newlander–Nirenberg). An almost complex structure J is inte-
grable if and only if NJ ≡ 0.



We can repeat the almost complex structure construction on S2 with S6 – identify S6
with the space of unit imaginary octonions Im(O). This endows S6 with an almost
complex structure.

If one computes the Nijenhuis tensor of this almost complex structure, however, it does
not vanish precisely because the octonions are not associative.



Hermitian and Kähler Metrics

A Riemannian metric g on a complex manifold (X, J) is said to beHermitian if

g(Ju, Jv) = g(u, v), u, v ∈ TX.

Every complex manifold supports a Hermitian metric: Take any Riemannian metric g
and set

h(u, v) := g(u, v) + g(Ju, Jv).

We say that a Hermitian metric g is Kähler if the 2–form

ωg(u, v) := g(Ju, v)

is closed.



Some examples of Kähler manifolds

† Complex projective space Pn endowed with the Fubini–Study metric.
 Projective manifolds.

† Euclidean space Cn endowed with the Euclidean metric.
 Stein manifolds (in particular, pseudoconvex domains).

† A compact complex surface is Kähler if and only if the first Betti number is even.

 Hopf surface S1 × S3 is not Kähler.

† The Weil–Petersson metric on the Riemann moduli space Mg .



Holomorphic Bisectional Curvature

Let (X, ω) be a Kähler manifold. The holomorphic bisectional curvature is
given by

HBCω(u, v) :=
1

|u|2ω |v|2ω
R(u, Ju, v, Jv),

where u, v ∈ T1,0X.

The terminology comes from the observation that the HBC is a sum of two sectional
curvatures:

HBCω(u, v) = R(v0, u0, u0, v0) + R(Ju0, v0, v0, Ju0),

where u = u0 −
√
−1Ju0 and v = v0 −

√
−1Jv0.



The most famous result concerning the holomorphic bisectional curvature is the Mori
and Siu–Yau solution of the Frankel conjecture:

Theorem. (Mori, Siu–Yau). Let (X, ω) be a compact Kähler manifold with
HBCω > 0. Then X is biholomorphic to Pn.

In contrast to the sectional curvature, there are compact simply connected Kähler
manifolds with HBCω < 0. There were recently constructed by Mohsen.



Reminder: Structure theorems for Riemannian manifolds with Sec < 0.

Cartan–Hadamard:

M ∈ (Sec ≤ 0) =⇒ M̃ 'diffeo Rn.

Preissman:

M ∈ (Sec < 0) ∩ (Cmpct) =⇒ M 6' M1 ×M2.

Anderson:

B ∈ (Sec < 0) ∩ (Cmpct) =⇒ VectC∞ (B) ⊆ (−a ≤ Sec ≤ −1).



The Complex-Analytic Category:

Replace:
– smooth vector bundles by holomorphic vector bundles f : E→ B

– sectional curvature by the holomorphic bisectional curvature.

Question. Let f : E→ B be a holomorphic vector bundle, where B is compact
and admits a Hermitian metric ω with cHBCω < 0. Does E admit a complete
Hermitian metric with −a ≤ cHBC ≤ −1, for some constant a > 1?



The answer turns out to be false, by a result of F. Zheng:

Theorem. (Zheng). Let X := X × Y be a product complex manifold with X
compact. Then X does not admit a Hermitian metric ω with

cHBCω ≤ −1.

In fact, Zheng’s theorem asserts that X does not even admit a (possibly non-complete) Hermitian metric with cHBCω ≤ −1.



A Theorem of Paul Yang

Theorem. (Yang). Let F ↪→ X→ B be a holomorphic fiber bundle with F com-
pact. Then X does not admit a complete Kähler metric with HBCω ≤ −κ0 < 0.

The following theorem of Fischer and Grauert shows that holomorphic fiber bundles
with compact fiber are trivial in the following sense:

Theorem. (Fischer–Grauert). Let p : X → S be a holomorphic family of com-
pact complex manifolds. The fibers of p are all biholomorphic if and only if p is
a holomorphic fiber bundle.



A Theorem of Paul Yang

Theorem. (Yang). Let F ↪→ X→ B be a holomorphic fiber bundle with F com-
pact. Then X does not admit a complete Kähler metric with HBCω ≤ −κ0 < 0.

Corollary. Let p : X → B be a holomorphic family of compact complex mani-
folds. If X admits a complete Kähler metric with HBCω ≤ −κ0 < 0, there must
be non-trivial holomorphic variation in the fibers.



The bisectional curvature must be bounded away from zero:

Theorem. (Klembeck). There is a complete Kähler metric on Cn with

HBCω > 0.

Seshadri gave a small modification of Klembeck’s construction, showing:

Theorem. (Seshadri = Klembeck+ε). There is a completeKähler metric on Cn

with
HBCω < 0.



The narrative thus far:

– The bidisk D2 := D× D ⊆ C2 is a holomorphically trivial disk fibration.

– The ball B2 is a disk fibration which cannot be locally trivial.

– In the Riemannian category, Preissman’s theorem ensures that compact manifolds
with negative sectional curvature cannot be trivial bundles.

– Zheng: Product manifolds with one of the factors being compact do not admit
Hermitian metrics with HBC ≤ −1.

– Yang: Holomorphic fiber bundles (holomorphic families with all fibers
biholomorphic) with compact fiber do not admit metrics with HBC ≤ −1.

– Klembeck, Seshadri – The curvature must be bounded away from zero.



Curvature of the product metric on the bidisk D2:
(†) Sec(D2) ≤ 0.
(†) HBC(D2) ≤ 0.

Curvature of the Poincaré metric on the ball B2:
(†) −4 ≤ Sec(B2) ≤ −1.
(†) −2 ≤ HBC(B2) ≤ −1.

Recall that p : D2 → D is a trivial disk fibration, while p : B2 → D is a necessarily non-trivial disk fibration.



The Conjectural Picture:

Conjecture. Let f : X → S be a holomorphic family of complex manifolds.
Suppose X admits a complete Hermitian metric with HBC ≤ −κ0 < 0. Then f
is not (holomorphically) locally trivial.



Kodaira Fibration Surfaces

Let p : X→ S be a surjective holomorphic submersion onto a compact Riemann
surface of genus b ≥ 2 with fibers being compact Riemann surfaces of genus
g ≥ 2. If there fibers are not all biholomorphic, then we say that p : X → S is
a Kodaira Fibration Surface.

S

s0

Xs0
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Curvature of the Total Space of Kodaira Fibrations

Theorem. (To–Yeung) Let p : X → S be a Kodaira fibration surface. Then X
admits a Kähler metric with HBCω < 0.

The structure of the argument is just as important as the result:

– The fibers of a KFS are Riemann surfaces of genus g ≥ 2. So we get a moduli map
µ : S→ Mg into the moduli space of genus g ≥ 2 Riemann surfaces.

– Define a map τ : X→ Mg,1 by sending x ∈ X to the biholomorphism class of the
marked Riemann surface Xp(x) − {x}, where Xp(x) := p−1(p(x)) is the fiber over
p(x).

– The Weil–Petersson metric ωWP onMg,1 has strictly negative bisectional
curvature. Thus, we obtain a metric on X by pulling back the Weil–Petersson
metric from Mg,1 to X.

KFS = Kodaira fibration surface = the total space of non-trivial family of genus≥ 2 Riemann surfaces over a genus≥ 2 Riemann surface.



Question. (Mok). Does the bidiskD2 := D×D admit a complete Kähler metric
with HBCω ≤ −κ0 < 0?



Thanks for listening!


