Tutorial Quiz 2018

MATH1013 - Mathematics and Applications 1

Tutorial Quiz 7 Calculus and Linear Algebra

> Reading time: 1 minute Writing time: 10 minutes

Student Name: ______ University ID: ______

Question and Answer Book

Structure of Book

Number of	Number of questions	Number of
questions 3	to be answered 2	<u>marks</u> 15

- Students are NOT permitted any calculators or notes during the quiz.
- Students are NOT permitted to colaborate in any form during the quiz. Any signs of collaboration or cheating will result in a nullified score and the course convenor will be informed of any academic misconduct.

Materials supplied

- Question and answer booklet of 7 pages.
- Working space is provided throughout the booklet.

Instructions

- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer **all** questions in the space provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Linear Algebra

Question 1

Recall that an operator $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is *linear* if

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all $\mathbf{u} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.
- (a) Use the definition to determine whether $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is linear, where

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}3x+4\\x+6-2y\end{bmatrix}.$$

[3 marks].

(b) Suppose that $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation, such that

$$S\left(\begin{bmatrix}0\\3\end{bmatrix}\right) = \begin{bmatrix}1\\4\end{bmatrix}$$
 and $S\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}3\\5\end{bmatrix}$.

(i) Find $S\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$. (Show working). [2 marks]. (ii) Find **A**, the standard matrix of *S*. [1 mark].

Calculus

Question 1

Evaluate the following derivatives.

(a)

(b)

$$\frac{d}{dx} \left(\int_0^4 \frac{1}{\sqrt{\log_e(|x| + \sec^2(x) + 10) + \pi}} e^{-\sin(x)\tan^{-1}(x^3 + 1)} dx \right).$$

[Hint: You have to $think^1$.]

 $\frac{d}{dx}\left(e^{\int_1^x s ds}\right).$ [3 marks].

¹Sorry about that...

[3 marks].

Bonus Question

Show that

$$\log_a(N)\log_b(N) + \log_b(N)\log_e(N) + \log_c(N)\log_a(N) = \frac{\log_a(N)\log_b(N)\log_c(N)}{\log_{abc}(N)}$$

[4 marks].

