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Let (Mn, g) be a compact connected Riemannian n-manifold and ϕ
a k-form on M.

The Weitzenböck Formula:

∆ϕ = (dd∗ + d∗d)ϕ = ∇∗∇ϕ+ RicL (ϕ) ,

here RicL (ϕ) is a contraction of ∇2ϕ which as Weitzenböck
realized had to be a contraction of R ⊗ ϕ as it is a 0th order
invariant.

Bochner-Yano: When the form is harmonic, ∆ϕ = 0, we obtain

0 = g (∇∗∇ϕ, ϕ) + g (RicL (ϕ) , ϕ) .



Here ∫
g (∇∗∇ϕ, ϕ) =

∫
|∇ϕ|2 ≥ 0.

In particular,

g (RicL (ϕ) , ϕ) ≥ 0 ⇒ |∇ϕ|2 = 0, g (RicL (ϕ) , ϕ) = 0.

When g (RicL (ϕ) , ϕ) ≥ 0 on all k-forms Hodge theory shows

bk = dimHk (M) ≤
(
n

k

)
= dimHk

(
S1 × · · · × S1)

and if in addition g (RicL (ϕ) , ϕ) > 0 at a point then

bk = 0.



This strategy carries over to Kähler manifolds (X n, g) where X is a
complex manifold of complex dimension n. Here k-forms on the
complexified tangent bundle TCM are further divided into
(p, q)-forms, p + q = k , that look like

ϕ =
∑

ϕI J̄dz
I ∧ dz̄ J̄ .

The corresponding cohomology groups are denoted by Hp,q (X ).
Complex conjugation shows that (p, q)-forms are conjugate
isomorphic to (q, p)-forms. So it suffices to consider real forms in
Hp,q ⊕Hq,p if we wish to control Hodge numbers hp,q = dimCHp,q.



The techniques involved in our results depend on the basic Lie
algebra actions on tensors derived from the regular representation.
For an endomorphism S ∈ gl (TxM) we have

(Sω) (v1, . . . , vp) = −
p∑

i=1

ω (v1, . . . ,Svi , . . . , vp) .

With this notation we can in the Riemannian case select an ONB
Aα ∈ Λ2TxM of eigenvectors R (Aα) = λαAα and the curvature
term in the Bochner formula becomes:

g (RicL (ϕ) , ϕ) =
∑

λα |Aαϕ|2 .

This formula is due to Poor and leads immediately to a proof of the
Gallot-Meyer classification of manifolds with nonnegative curvature
operator.



P-Wink used this formula to obtain restrictions on Betti and Hodge
numbers with less restrictive curvature assumptions. For Kähler
manifolds we consider the Kähler curvature operator

K : Λ1,1TCM → Λ1,1TCM

and consider an ONB of eigenvalues K (Aα) = λαAα and obtain a
similar formula

g
(
RicL (ϕ) , ϕ̄

)
=

∑
λα |Aαϕ|2 .

We say that a self-adjoint operator is r -positive provided its
eigenvalues λ1 ≤ λ2 ≤ · · · satisfy

λ1 + · · ·+ λ⌊r⌋ + (r − ⌊r⌋)λ⌊r⌋+1 > 0.

Bochner 1946: If Ric is 2p-positive for p = 1, ..., n, then hp,0 = 0.

Ogiue-Tachibana: 1978: If K is positive, then hp,q = 0 for p ̸= q
and hp,p = 1, i.e., X n has the cohomology of Pn.



P-Wink 2021: If K is 2 + 2/n positive, then X n has the
cohomology of Pn.

This result is not ideal and in fact is much better for (p, p)-forms
requiring only n/2-positivity. It is possible that this is due to the
fact that we only use that K is self-adjoint thus ignoring the
Bianchi identity.

For Kähler manifolds the symmetries of the curvature tensor Rab̄cd̄

however allow for a more efficient self-adjoint operator that does
include the Bianchi identity. The key identities used for K are

Rab̄cd̄ = Rcd̄ab̄ = −Rb̄acd̄ .



For Kähler curvature tensors the Bianchi identity is encoded in

Rab̄cd̄ = Rcb̄ad̄ = Rad̄cb̄.

This also tells us that the curvature tensor is a self-adjoint operator
on the space of holomorphic symmetric tensors S2,0 spanned by

∂a � ∂b = ∂a ⊗ ∂b + ∂b ⊗ ∂a.

This operator C : S2,0 → S2,0 was introduced by Calabi-Vesentini
in an important paper (1960) that initiated the study of rigidity of
locally symmetric spaces. It seems only reasonable to refer to it as
the Calabi curvature operator.



C-V observed that any self-adjoint operator on S2,0 is in fact an
algebraic Kähler curvature tensor. They also calculated the
eigenvalues of C on the irreducible Hermitian symmetric spaces. In
constant holomorphic curvature it is a homothety. For higher rank
irreducible symmetric spaces C has precisely two eigenvalues of
opposite sign. Among these examples the complex quadric

SO (2 + n)

SO (2)× SO (n)

is the most positive with the eigenvalues satisfying

σ1 + · · ·σ⌊ n
2⌋ +

(n
2
−
⌊n
2

⌋)
σ1+⌊ n

2⌋ = 0.

Ogiue-Tachibana 1978: If C is positive, then the space has the
cohomology of Pn.



Broder-Nienhaus-P-Stanfield-Wink: If C is n
2 -positive, then X n has

the cohomology of Pn.

Moreover, if C is n/2-nonnegative, then one of the following cases
holds:

▶ The holonomy is irreducible and the space either has the
cohomology of Pn or is isometric to the complex quadric.

▶ The holonomy is reducible and a finite cover is isometric to
T k × Y , where Y is a product of spaces that are
biholomorphic to projective spaces.

In the first case it follows from Berger’s classification of holonomy
groups that the holonomy is either U (n) or the space is symmetric
as it can’t be Ricci flat. In the second case the reducibility
introduces so many zero eigenvalues that C is forced to be
nonnegative. In particular, the bisectional curvature is nonnegative
and we can use Mok’s classification (1988).



Consider an ONB of eigenvalues C (Sα) = σαSα. The holomorphic
tensors Sα can be type changed to conjugate linear maps
T 1,0 → T 0,1. As such they act on tensors and in particular
(p, q)-forms, however Sα : Λp,q → Λp+1,q−1.

We have
g
(
RicL (ϕ) , ϕ̄

)
= 8

∑
σα |Sαϕ|2 .

If |ϕ|2 = 1, then∑
|Sαϕ|2 =

1
4
((n + 1) (p + q)− 2pq)

and when ϕ is a primitive real form in Λp,q ⊕ Λq,p, then

|Sαϕ|2 ≤ 1
2
+min

{
p, q,

√
pq

2

}



If we define
Cp,q =

(n + 1) (p + q)− 2pq
2 +min

{
4p, 4q, 2

√
pq

} ,
then real primitive harmonic forms in Λp,q ⊕ Λq,p vanish provided C
is Cp,q-positive.

Here:

▶ Cp,q ≥ n
2 and the minimum is attained when p = q = 1.

▶ Cp,p = (n+1)p−p2

1+p .

▶ Cp,0 = (n+1)p
2 and in particular Cn,0 = dimS2,0.


