Tutorial Quiz 2018

MATH1014 - Mathematics and Applications 2

Tutorial Quiz 8 Calculus and Linear Algebra

> Reading time: 1 minute Writing time: 8 minutes

Student Name: ______ University ID: _____

Question and Answer Book

Structure of Book

Number of	Number of questions	Number of
questions	to be answered	marks
2	2	10

- Students are NOT permitted any calculators or notes during the quiz.
- Students are NOT permitted to colaborate in any form during the quiz. Any signs of collaboration or cheating will result in a nullified score and the course convenor will be informed of any academic misconduct.

Materials supplied

- Question and answer booklet of 5 pages.
- Working space is provided throughout the booklet.

Instructions

- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS INTENTIONALLY BLANK

Instructions

Answer **all** questions in the space provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

For each statement, decide whether it is always true (\mathbf{T}) or sometimes false (\mathbf{F}) and write your answer clearly next to the letter before the statement.

- (a) A 3×3 upper triangular matrix which has diagonal entries 1, 2, 7, is always diagonalisable.
- (b) If the eigenvalues of a 3×3 matrix are 1, 1, 2, then A is invertible.
- (c) If the eigenvalues of a 3×3 matrix are 1, 1, 2, then A is diagonalisable.
- (d) Suppose that the only eigenvectors of A are multiples x = (1, 0, 0), then A is not invertible.
- (e) Let A and B be two $n \times n$ matrices, where $n \in \mathbb{N}$. If λ_1 is an eigenvalue of A, and λ_2 is an eigenvalue of B then $\lambda_1 \cdot \lambda_2$ is an eigenvalue of AB.

Question 2

Consider the matrices

$$A_1 := \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}, \quad A_2 := \begin{bmatrix} 2 & 0 \\ 2 & -2 \end{bmatrix}, \quad \text{and} \quad A_3 := \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}.$$

Determine (with jufistication) which of these of these matrices is diagonalisable. If the matrix is diagonalisable, write out the matrices $\Lambda D \Lambda^{-1}$ such that $A = \Lambda D \Lambda^{-1}$. Here we have adopted the standard notation that Λ represents an invertible matrix, and D is a diagonal matrix.

END OF TUTORIAL QUIZ