Tutorial Quiz 2018

MATH1014 - Mathematics and Applications 2

Tutorial Quiz 5 Calculus and Linear Algebra

> Reading time: 1 minute Writing time: 12 minutes

 Student Name:

 University ID:

Question and Answer Book

Structure of Book

Number of	Number of questions	Number of
questions	$to \ be \ answered$	marks
2	2	11

- Students are NOT permitted any calculators or notes during the quiz.
- Students are NOT permitted to colaborate in any form during the quiz. Any signs of collaboration or cheating will result in a nullified score and the course convenor will be informed of any academic misconduct.

Materials supplied

- Question and answer booklet of 5 pages.
- Working space is provided throughout the booklet.

Instructions

- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer **all** questions in the space provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

For each statement, decide whether it is always true (\mathbf{T}) or sometimes false (\mathbf{F}) and write your answer clearly next to the letter before the statement.

(a) The set of all 2×2 matrices with nonzero determinant with real entries is an \mathbb{R} -vector space.

[1 mark].

- (b) If V_1 and V_2 are two \mathbb{R} -vector spaces, then $V_1 \cup V_2$ is a vector space. [1 mark].
- (c) The intersection of three equations in \mathbb{R}^3 describes a point in \mathbb{R}^3 . [1 mark].
- (d) The set

$$\mathcal{H} = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : ab < 0 \right\}$$

is a subspace of \mathbb{R}^2 .

(e) The linear map $T: \mathscr{C}^1(0,1) \to \mathscr{C}[0,1]$ defined by

$$T(f) = \frac{df}{dx}$$

- (f) Every function $f : \mathbb{R} \to \mathbb{R}$ has a power series representation. [1 mark].
- (h) Every polynomial in \mathbb{P}_4 may be identified with a vector in \mathbb{R}^5 . [1 mark].
- (i) The integral

is onto¹.

$$\int_0^1 \frac{\cos(x) + 1}{x} dx$$

converges.

(j) Let $f: (1,\infty) \to \mathbb{R}$ be such that $\int_1^\infty |f(x)| \, dx < \infty$. Then $\int_1^\infty |f(x)|^2 \, dx < \infty$. [1 mark].

[1 mark].

[1 mark].

[1 mark].

¹Recall that $\mathscr{C}^1(0,1)$ denotes the space of continuously differentiable functions on (0,1) and $\mathscr{C}[0,1]$ denotes the space of continuous functions on [0,1]

This page is intentionally left blank for scratch work

Question 2

Suppose that f(x) > g(x) for all $x \in (1, \infty)$. Prove that

[2 marks].

$$\int_1^\infty e^{-f(x)} dx < \int_1^\infty e^{-g(x)} dx.$$

[We assume that both integrals in the above inequality are convergent.]

END OF TUTORIAL QUIZ.